Programmable responsive shaping behavior induced by visible multi-dimensional gradients of magnetic nanoparticles

Herein, we report a new ‘programmable’ responsive shaping behavior induced by the visible multi-dimensional gradient of magnetic nanoparticles (MNP): the materials exhibit different local curvatures and a sequence of responsive shapes during the responsive process; the sequence and the local curvature are accurately defined by ‘programmed instructions’—MNP gradients in the materials.

[1]  Yanlei Yu,et al.  Photoinduced bending and unbending behavior of liquid-crystalline gels and elastomers , 2004 .

[2]  S. Idziak,et al.  Lamellar Biogels: Fluid-Membrane-Based Hydrogels Containing Polymer Lipids , 1996, Science.

[3]  Junqi Sun,et al.  Humido- and Thermo-Responsive Free-Standing Films Mimicking the Petals of the Morning Glory Flower , 2009 .

[4]  Meifang Zhu,et al.  High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics , 2006 .

[5]  Marc Behl,et al.  Shape-Memory Polymers and Shape-Changing Polymers , 2009 .

[6]  T. Xie Tunable polymer multi-shape memory effect , 2010, Nature.

[7]  Zhibing Hu,et al.  Shape memory gels made by the modulated gel technology , 1997 .

[8]  Toru Takehisa,et al.  Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay , 2002 .

[9]  E. Sharon,et al.  Shaping of Elastic Sheets by Prescription of Non-Euclidean Metrics , 2007, Science.

[10]  George M. Whitesides,et al.  Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer , 1998, Nature.

[11]  Hao Jiang,et al.  Bimaterial Microcantilevers as a Hybrid Sensing Platform , 2008 .

[12]  M. Sasaki,et al.  Preparation of a novel composition-gradient thermosensitive gel , 2006 .

[13]  M. Akashi,et al.  Hydrogel logic gates using gradient semi-IPNs. , 2009, Chemical communications.

[14]  Miklós Zrínyi,et al.  Electric field sensitive neutral polymer gels , 2000 .

[15]  Mechanical Properties and Phase Transition of High Clay Content Clay/Poly(N‐isopropylacrylamide) Nanocomposite Hydrogel , 2007 .

[16]  Tomoyuki Ishikawa,et al.  Rapid and reversible shape changes of molecular crystals on photoirradiation , 2007, Nature.

[17]  A. Khokhlov,et al.  Novel pH-responsive hydrogels with gradient charge distribution , 2010 .

[18]  Michiya Matsusaki,et al.  Fabrication of Temperature‐Responsive Bending Hydrogels with a Nanostructured Gradient , 2008 .

[19]  Zhibing Hu,et al.  Synthesis and Application of Modulated Polymer Gels , 1995, Science.

[20]  Zhibing Hu,et al.  Bending of bi‐gels , 1996 .

[21]  T. Ikeda,et al.  Photomechanics: Directed bending of a polymer film by light , 2003, Nature.

[22]  James K. Gimzewski,et al.  Observation of a chemical reaction using a micromechanical sensor , 1994 .

[23]  Q. Tang,et al.  Electric field sensitivity of conducting hydrogels with interpenetrating polymer network structure , 2009 .

[24]  Hao Jiang,et al.  Polymer–Silicon Flexible Structures for Fast Chemical Vapor Detection , 2007 .

[25]  Toru Takehisa,et al.  Nanocomposite Hydrogels: A Unique Organic–Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De‐swelling Properties , 2002 .

[26]  Robin H. Liu,et al.  Functional hydrogel structures for autonomous flow control inside microfluidic channels , 2000, Nature.

[27]  Tsunehisa Kimura,et al.  Fabrication of a short carbon fiber/gel composite that responds to a magnetic field , 2010 .

[28]  A. K. Agarwal,et al.  Adaptive liquid microlenses activated by stimuli-responsive hydrogels , 2006, Nature.