A note on inference for P(X  <  Y) for right truncated exponentially distributed data

In this paper, a likelihood based analysis is developed and applied to obtain confidence intervals and p values for the stress-strength reliability R  =  P(X  <  Y) with right truncated exponentially distributed data. The proposed method is based on theory given in Fraser et al. (Biometrika 86:249–264, 1999) which involves implicit but appropriate conditioning and marginalization. Monte Carlo simulations are used to illustrate the accuracy of the proposed method.

[1]  F. Downton The Estimation of Pr (Y < X) in the Normal Case , 1973 .

[2]  Wayne A. Woodward,et al.  Minimum Variance Unbiased Estimation of P[Y < X] in the Normal Case , 1977 .

[3]  Distribution-free Confidence Intervals for Pr(X1 < X2) , 1987 .

[4]  O. E. Barndorff-Nielsen,et al.  Infereni on full or partial parameters based on the standardized signed log likelihood ratio , 1986 .

[5]  O. Barndorff-Nielsen Modified signed log likelihood ratio , 1991 .

[6]  Jianrong Wu,et al.  Practical Small-Sample Asymptotics for Distributions Used in Life-Data Analysis , 2000, Technometrics.

[7]  T. Severini Likelihood Methods in Statistics , 2001 .

[8]  Necip Doganaksoy,et al.  Comparisons of Approximate Confidence Intervals for Distributions Used in Life-Data Analysis , 1993 .

[9]  H. Tong,et al.  A Note on the Estimation of Pr {Y < X} in the Exponential Case , 1974 .

[10]  Adnan M. Awad,et al.  Some inference results on pr(x < y) in the bivariate exponential model , 1981 .

[11]  M. I. Hamdy Distribution-free confidence intervals for Pr(X , 1995 .

[12]  Nancy Reid,et al.  Likelihood and higher‐order approximations to tail areas: A review and annotated bibliography , 1996 .

[13]  Nancy Reid,et al.  A simple general formula for tail probabilities for frequentist and Bayesian inference , 1999 .

[14]  K. S. Sultan,et al.  Parametric and nonparametric estimation of P(Y < X) for finite mixtures of lognormal components , 1997 .

[15]  Seymour Geisser,et al.  Estimation of the Probability that Y , 1971 .

[16]  H. Tong,et al.  THE EDITOR Technometrics , 1975 .