Beta oscillations and their functional role in movement perception

Neuronal oscillations refer to periodic changes of neuronal activity. A prominent neuronal oscillation, especially in sensorimotor areas, is the beta-frequency-band (∼ 13–29 Hz). Sensorimotor beta oscillations are predominantly linked to motor-related functions such as preparation and/or execution of movements. In addition, beta oscillations have been suggested to play a role in long-range communication between multiple brain areas. In this review, we assess different studies that show that sensorimotor beta oscillations are additionally involved in the visual perception and imagery of biological movements. We propose that sensorimotor beta oscillations reflect a mechanism of attempted matching to internally stored representations of movements. We additionally, provide evidence that beta oscillations play a role for the integration of visual and sensorimotor areas to a functional network that incorporates perceptual components at specific spatial-temporal profiles and transmits information across different areas.

[1]  Julian Keil,et al.  The role of alpha oscillations for illusory perception , 2014, Behavioural Brain Research.

[2]  O. Bertrand,et al.  Oscillatory gamma activity in humans and its role in object representation , 1999, Trends in Cognitive Sciences.

[3]  Robert Oostenveld,et al.  Imaging the human motor system’s beta-band synchronization during isometric contraction , 2008, NeuroImage.

[4]  W. Klimesch Memory processes, brain oscillations and EEG synchronization. , 1996, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[5]  Miles A Whittington,et al.  Long-range synchronization of gamma and beta oscillations and the plasticity of excitatory and inhibitory synapses: a network model. , 2002, Journal of neurophysiology.

[6]  I. Toni,et al.  Oscillations , 2018, Physics to a Degree.

[7]  W. Klimesch EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis , 1999, Brain Research Reviews.

[8]  O. Jensen,et al.  Cross-frequency coupling between neuronal oscillations , 2007, Trends in Cognitive Sciences.

[9]  V. Jousmäki,et al.  Involvement of Primary Motor Cortex in Motor Imagery: A Neuromagnetic Study , 1997, NeuroImage.

[10]  A. Keil,et al.  Modulation of Induced Gamma Band Responses in a Perceptual Learning Task in the Human EEG , 2002, Journal of Cognitive Neuroscience.

[11]  G Pfurtscheller,et al.  Event-related desynchronization during motor behavior and visual information processing. , 1991, Electroencephalography and clinical neurophysiology. Supplement.

[12]  G. Knyazev,et al.  Event-related delta and theta synchronization during explicit and implicit emotion processing , 2009, Neuroscience.

[13]  Hans Berger Hans Berger on the electroencephalogram of man : The fourteen original reports on the human electroencephalogram , 1969 .

[14]  Terrence J Sejnowski,et al.  Communication in Neuronal Networks , 2003, Science.

[15]  R. Hari,et al.  Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement , 1994, Neuroscience.

[16]  O. Jensen,et al.  Frontal theta activity in humans increases with memory load in a working memory task , 2002, The European journal of neuroscience.

[17]  G. Pfurtscheller,et al.  Early onset of post-movement beta electroencephalogram synchronization in the supplementary motor area during self-paced finger movement in man , 2003, Neuroscience Letters.

[18]  J. Freyd,et al.  Apparent Motion of the Human Body , 1990 .

[19]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[20]  G. Buzsáki Large-scale recording of neuronal ensembles , 2004, Nature Neuroscience.

[21]  Joachim Lange,et al.  Distinct spatio-temporal profiles of beta-oscillations within visual and sensorimotor areas during action recognition as revealed by MEG , 2014, Cortex.

[22]  A. Oliviero,et al.  Dopamine Dependency of Oscillations between Subthalamic Nucleus and Pallidum in Parkinson's Disease , 2001, The Journal of Neuroscience.

[23]  Earl K. Miller,et al.  Shifting the Spotlight of Attention: Evidence for Discrete Computations in Cognition , 2010, Front. Hum. Neurosci..

[24]  Neil G. Muggleton,et al.  Effects of TMS over Premotor and Superior Temporal Cortices on Biological Motion Perception , 2012, Journal of Cognitive Neuroscience.

[25]  F. L. D. Silva,et al.  Beta rebound after different types of motor imagery in man , 2005, Neuroscience Letters.

[26]  S. Bressler,et al.  Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Markus Butz,et al.  Distinct oscillatory STN-cortical loops revealed by simultaneous MEG and local field potential recordings in patients with Parkinson's disease , 2011, NeuroImage.

[28]  Sebastiaan Overeem,et al.  Corticospinal Beta-Band Synchronization Entails Rhythmic Gain Modulation , 2010, The Journal of Neuroscience.

[29]  G. Pfurtscheller,et al.  Post-movement beta synchronization. A correlate of an idling motor area? , 1996, Electroencephalography and clinical neurophysiology.

[30]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[31]  A. Schnitzler,et al.  Synchronised oscillations of the human sensorimotor cortex. , 2000, Acta neurobiologiae experimentalis.

[32]  S. Bressler Large-scale cortical networks and cognition , 1995, Brain Research Reviews.

[33]  A. Engel,et al.  Beta-band oscillations—signalling the status quo? , 2010, Current Opinion in Neurobiology.

[34]  E. Basar,et al.  Brain oscillations in perception and memory. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[35]  O. Jensen,et al.  Modulation of Gamma and Alpha Activity during a Working Memory Task Engaging the Dorsal or Ventral Stream , 2007, The Journal of Neuroscience.

[36]  O. Jensen,et al.  Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition , 2010, Front. Hum. Neurosci..

[37]  A. Schnitzler,et al.  Normal and pathological oscillatory communication in the brain , 2005, Nature Reviews Neuroscience.

[38]  R. Hari,et al.  Functional Segregation of Movement-Related Rhythmic Activity in the Human Brain , 1995, NeuroImage.

[39]  G Pfurtscheller,et al.  Event-related beta synchronization after wrist, finger and thumb movement. , 1998, Electroencephalography and clinical neurophysiology.

[40]  C. Neuperl. T,et al.  Ergebnisbezogene EEG-Desynchronisation (ERD) beim Vorstellen einer Handbewegung erhoben an Patienten mit Amputation oder Zervikalläsion im Vergleich zu gesunden Kontrollpersonen , 1999 .

[41]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[42]  G. Buzsáki,et al.  Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons , 2004, Trends in Neurosciences.

[43]  J. Lange,et al.  A Model of Biological Motion Perception from Configural Form Cues , 2006, The Journal of Neuroscience.

[44]  W. Klimesch,et al.  Dynamisches EEG-Mapping - bildgebendes Verfahren für die Untersuchung perzeptiver, motorischer und kognitiver Hirnleistungen , 1986 .

[45]  Á. Pascual-Leone,et al.  Repetitive TMS over posterior STS disrupts perception of biological motion , 2005, Vision Research.

[46]  J. Palva,et al.  New vistas for alpha-frequency band oscillations. , 2007, Trends in neurosciences.

[47]  G. Pfurtscheller,et al.  Motor imagery activates primary sensorimotor area in humans , 1997, Neuroscience Letters.

[48]  Blake W. Johnson,et al.  Primary motor cortex activation during action observation revealed by wavelet analysis of the EEG , 2004, Clinical Neurophysiology.

[49]  G. Ermentrout,et al.  Gamma rhythms and beta rhythms have different synchronization properties. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[50]  G. Pfurtscheller,et al.  Event-related synchronization (ERS) in the alpha band--an electrophysiological correlate of cortical idling: a review. , 1996, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[51]  S. Baker Oscillatory interactions between sensorimotor cortex and the periphery , 2007, Current Opinion in Neurobiology.

[52]  Peter Brown,et al.  Modulation of beta oscillations in the subthalamic area during motor imagery in Parkinson's disease. , 2006, Brain : a journal of neurology.

[53]  Febo Cincotti,et al.  Human Cortical Electroencephalography (EEG) Rhythms during the Observation of Simple Aimless Movements: A High-Resolution EEG Study , 2002, NeuroImage.

[54]  C. Koch,et al.  Is perception discrete or continuous? , 2003, Trends in Cognitive Sciences.

[55]  G. Knyazev,et al.  Neuroscience and Biobehavioral Reviews , 2012 .

[56]  Michael J. Kahana,et al.  Direct brain recordings fuel advances in cognitive electrophysiology , 2010, Trends in Cognitive Sciences.

[57]  R. Oostenveld,et al.  Tactile Spatial Attention Enhances Gamma-Band Activity in Somatosensory Cortex and Reduces Low-Frequency Activity in Parieto-Occipital Areas , 2006, The Journal of Neuroscience.

[58]  Blake W. Johnson,et al.  Changes in rolandic mu rhythm during observation of a precision grip. , 2004, Psychophysiology.

[59]  Robert Oostenveld,et al.  Motor-cortical beta oscillations are modulated by correctness of observed action , 2008, NeuroImage.

[60]  J. Lange,et al.  Visual perception of biological motion by form: a template-matching analysis. , 2006, Journal of vision.

[61]  L. Colgin Mechanisms and functions of theta rhythms. , 2013, Annual review of neuroscience.

[62]  R. Knight,et al.  The functional role of cross-frequency coupling , 2010, Trends in Cognitive Sciences.

[63]  J. Freyd,et al.  Timing and Apparent Motion Path Choice With Human Body Photographs , 1993 .

[64]  R. Oostenveld,et al.  Reduced Occipital Alpha Power Indexes Enhanced Excitability Rather than Improved Visual Perception , 2013, The Journal of Neuroscience.

[65]  Á. Pascual-Leone,et al.  Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. , 2008, Cerebral cortex.

[66]  C. Craig,et al.  Time to get a move on: Overcoming bradykinetic movement in Parkinson's disease with artificial sensory guidance generated from biological motion , 2013, Behavioural Brain Research.

[67]  M Steriade,et al.  Slow sleep oscillation, rhythmic K‐complexes, and their paroxysmal developments , 1998, Journal of sleep research.

[68]  Antonio Oliviero,et al.  Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson's disease , 2004, Experimental Neurology.

[69]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[70]  J. Fell,et al.  The role of phase synchronization in memory processes , 2011, Nature Reviews Neuroscience.

[71]  J. Palva,et al.  New vistas for α-frequency band oscillations , 2007, Trends in Neurosciences.

[72]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[73]  M. Shiffrar People watching: visual, motor, and social processes in the perception of human movement. , 2011, Wiley interdisciplinary reviews. Cognitive science.

[74]  P. Brown Abnormal oscillatory synchronisation in the motor system leads to impaired movement , 2007, Current Opinion in Neurobiology.

[75]  P. Starr,et al.  Oscillations in sensorimotor cortex in movement disorders: an electrocorticography study. , 2012, Brain : a journal of neurology.

[76]  M. Heil,et al.  Expertise in dance modulates alpha/beta event‐related desynchronization during action observation , 2008, The European journal of neuroscience.

[77]  Matthias M. Müller,et al.  A cross-laboratory study of event-related gamma activity in a standard object recognition paradigm , 2006, NeuroImage.

[78]  Joachim Lange,et al.  Interactions between visual and motor areas during the recognition of plausible actions as revealed by magnetoencephalography , 2014, Human brain mapping.

[79]  A. Schnitzler,et al.  The neural basis of intermittent motor control in humans , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[80]  R Salmelin,et al.  Bilateral activation of the human somatomotor cortex by distal hand movements. , 1995, Electroencephalography and clinical neurophysiology.

[81]  J. Lisman,et al.  Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer , 2005, Trends in Neurosciences.

[82]  A. von Stein,et al.  Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[83]  F. L. D. Silva,et al.  Event-Related Desynchronization , 1999 .

[84]  N. Logothetis,et al.  Scaling Brain Size, Keeping Timing: Evolutionary Preservation of Brain Rhythms , 2013, Neuron.

[85]  Roger D. Traub,et al.  Long-Range Synchronization of γ and β Oscillations and the Plasticity of Excitatory and Inhibitory Synapses: A Network Model , 2002 .