Modified algorithms for image inpainting in Fourier transform domain

One of the aims of image inpainting is recovering an image some of which Fourier transform coefficients are lost. In this area, the algorithm of iterative coupled transform domain (ICTDI) has been given by Li and Zeng (SIAM J Imaging Sci 9:24–51, 2016). In this paper, we present some modified algorithms of ICTDI and prove their convergence. In fact, we consider the effect of spectrum and phase angle of the Fourier transform, separately. Therefore, in comparison with ICTDI, one more regularization parameter is generated, and hence, we have more degree of freedom, and therefore, in general, we expect a more appropriate solution.

[1]  Yunmei Chen,et al.  Optimal Primal-Dual Methods for a Class of Saddle Point Problems , 2013, SIAM J. Optim..

[2]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[3]  Xiaojing Ye,et al.  FAST TOTAL VARIATION WAVELET INPAINTING VIA APPROXIMATED PRIMAL-DUAL HYBRID GRADIENT ALGORITHM , 2013 .

[4]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .

[5]  William W. Hager,et al.  Fast Algorithms for Image Reconstruction with Application to Partially Parallel MR Imaging , 2012, SIAM J. Imaging Sci..

[6]  Dirk A. Lorenz,et al.  Iterated Hard Shrinkage for Minimization Problems with Sparsity Constraints , 2008, SIAM J. Sci. Comput..

[7]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[8]  Yin Zhang,et al.  Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..

[9]  Tony F. Chan,et al.  Total Variation Wavelet Inpainting , 2006, Journal of Mathematical Imaging and Vision.

[10]  Xi-Le Zhao,et al.  Total Variation Structured Total Least Squares Method for Image Restoration , 2013, SIAM J. Sci. Comput..

[11]  Raymond H. Chan,et al.  Alternating Direction Method for Image Inpainting in Wavelet Domains , 2011, SIAM J. Imaging Sci..

[12]  Tieyong Zeng,et al.  A Universal Variational Framework for Sparsity-Based Image Inpainting , 2014, IEEE Transactions on Image Processing.

[13]  Bingsheng He,et al.  On the Convergence of Primal-Dual Hybrid Gradient Algorithm , 2014, SIAM J. Imaging Sci..

[14]  Simon Setzer,et al.  Operator Splittings, Bregman Methods and Frame Shrinkage in Image Processing , 2011, International Journal of Computer Vision.

[15]  Xiaoming Yuan,et al.  A Generalized Proximal Point Algorithm and Its Convergence Rate , 2014, SIAM J. Optim..

[16]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[17]  Wotao Yin,et al.  A New Detail-Preserving Regularization Scheme , 2014, SIAM J. Imaging Sci..

[18]  Yiqiu Dong,et al.  An Efficient Primal-Dual Method for L1TV Image Restoration , 2009, SIAM J. Imaging Sci..

[19]  Tieyong Zeng,et al.  A New Algorithm Framework for Image Inpainting in Transform Domain , 2016, SIAM J. Imaging Sci..

[20]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..