On the linear combination, product and ratio of normal and Laplace random variables

The distributions of linear combinations, products and ratios of random variables arise in many areas of engineering. In this note, the exact distributions of αX+βY, |XY| and |X/Y| are derived when X and Y are independent normal and Laplace random variables.

[1]  A. Nandi,et al.  Unified approach to trimmed mean estimation and its application to bispectrum estimation of EEG signals , 1996 .

[2]  T. G. Pham,et al.  Reliability of a standby system with beta-distributed component lives , 1994 .

[3]  R. Farebrother The Distribution of a Positive Linear Combination of X2 Random Variables , 1984 .

[4]  Jeanne Albert,et al.  Sums of Uniformly Distributed Variables: A Combinatorial Approach , 2002 .

[6]  M. Springer,et al.  The Distribution of Products of Independent Random Variables , 1966 .

[7]  Antonio Pietrabissa,et al.  Control-based Connection Admission Control and Downlink Congestion Control procedures for satellite networks , 2009, J. Frankl. Inst..

[8]  A. Stuart Gamma-distributed products of independent random variables , 1962 .

[9]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[10]  Ram M. Narayanan Through-wall radar imaging using UWB noise waveforms , 2008, J. Frankl. Inst..

[11]  Rainer Martin,et al.  SPEECH ENHANCEMENT IN THE DFT DOMAIN USING LAPLACIAN SPEECH PRIORS , 2003 .

[12]  Viktor Witkovský,et al.  Computing the Distribution of a Linear Combination of Inverted Gamma Variables , 2001, Kybernetika.

[13]  B. Kamgar-Parsi,et al.  Distribution and moments of the weighted sum of uniforms random variables, with applications in reducing monte carlo simulations , 1995 .

[14]  M. Springer,et al.  The Distribution of Products of Beta, Gamma and Gaussian Random Variables , 1970 .

[15]  S. Provost On sums of independent gamma eandom yariames , 1989 .

[16]  Alan C. Bovik,et al.  Spectral properties of moving L-estimates of independent data , 1987 .

[17]  P. Moschopoulos,et al.  The distribution of the sum of independent gamma random variables , 1985 .

[18]  Mir M. Ali,et al.  Distribution of linear combination of exponential variates , 1982 .

[19]  A. Dobson,et al.  Confidence intervals for weighted sums of Poisson parameters. , 1991, Statistics in medicine.

[20]  Zhi-Hong Mao,et al.  A fast BER evaluation method for LDGM codes , 2010, J. Frankl. Inst..

[21]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[22]  H. J. Malik,et al.  Probability Density Function of the Product and Quotient of Two Correlated Exponential Random Variables , 1986, Canadian Mathematical Bulletin.

[23]  D. G. Chapman Some two Sample Tests , 1950 .

[24]  C. G. Khatri,et al.  The distribution of product of independent beta random variables with application to multivariate analysis , 1981 .

[25]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[26]  T. Pham-Gia,et al.  Distributions of the ratios of independent beta variables and applications , 2000 .

[27]  S. Gazor,et al.  Speech probability distribution , 2003, IEEE Signal Processing Letters.

[28]  Benny C. Y. Wong,et al.  Detector relative efficiency analysis in non-gaussian noise☆ , 1988 .

[29]  Cheryl M. Wallgren The Distribution of the Product of Two Correlated t Variates , 1980 .

[30]  D. L. Hawkins,et al.  Bivariate distributions of some ratios of independent noncentral chi-square random variables , 1986 .

[31]  Jen Tang,et al.  On the distribution of the product of independent beta random variables , 1984 .

[32]  G. D. Lin,et al.  An inequality for the weighted sums of pairwise i.i.d. generalized Rayleigh random variables , 2001 .

[33]  Jun Huang,et al.  Control of time-delayed linear differential inclusions with stochastic disturbance , 2010, J. Frankl. Inst..

[34]  P. Hitczenko A NOTE ON A DISTRIBUTION OF WEIGHTED SUMS OF I.I.D. RAYLEIGH RANDOM VARIABLES , 1998 .

[35]  S. M. Shcolnick,et al.  On the ratio of independent stable random variables , 1985 .

[36]  Danton Diego Ferreira,et al.  Coherence estimate between a random and a periodic signal: Bias, variance, analytical critical values, and normalizing transforms , 2009, J. Frankl. Inst..

[37]  N. Turkkan,et al.  Bayesian analysis of the difference of two proportions , 1993 .

[38]  Asoke K. Nandi,et al.  An extension of the generalized Gaussian distribution to include asymmetry , 1995 .

[39]  Don R. Halverson,et al.  Robust estimator design with an emphasis balance between performance and robustness , 2007, J. Frankl. Inst..

[40]  R. Fisher THE FIDUCIAL ARGUMENT IN STATISTICAL INFERENCE , 1935 .

[41]  Robert H. Lochner,et al.  On the Distribution of the Ratio of Two Random Variables Having Generalized Life Distributions , 1971 .

[42]  K. Helmes,et al.  A Convergence Theorem for Random Linear Combinations of Independent Normal Random Variables , 1979 .

[43]  P. Korhonen,et al.  The probability distribution of the ratio of the absolute values of two normal variables , 1989 .

[44]  Dimitrios Hatzinakos,et al.  Implementation aspects of various higher-order statistics estimators , 1996 .

[45]  Horst Podolski THE DISTRIBUTION OF A PRODUCT OF n INDEPENDENT RANDOM VARIABLES WITH GENERALIZED GAMMA DISTRIBUTION , 1972 .

[46]  S. James Press,et al.  The t-Ratio Distribution , 1969 .

[47]  H. Sakamoto,et al.  On the Distributions of the Product and the Quotient of the Independent and Uniformly Distributed Random Variables , 1943 .

[48]  Wai-Kai Chen,et al.  The Electrical Engineering Handbook , 2004 .

[49]  R. Davies The distribution of a linear combination of 2 random variables , 1980 .

[50]  Chrysostomos L. Nikias,et al.  Recent results in applications and processing of α-stable-distributed time series , 1996 .

[51]  H. Harter On the Distribution of Wald's Classification Statistic , 1951 .

[52]  G. Marsaglia Ratios of Normal Variables and Ratios of Sums of Uniform Variables , 1965 .

[53]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[54]  Amir K. Khandani,et al.  A new method for performance evaluation of bit decoding algorithms using statistics of the log likelihood ratio , 2006, J. Frankl. Inst..