Reconstruction and Validation of a Genome-Scale Metabolic Model for the Filamentous Fungus Neurospora crassa Using FARM

The filamentous fungus Neurospora crassa played a central role in the development of twentieth-century genetics, biochemistry and molecular biology, and continues to serve as a model organism for eukaryotic biology. Here, we have reconstructed a genome-scale model of its metabolism. This model consists of 836 metabolic genes, 257 pathways, 6 cellular compartments, and is supported by extensive manual curation of 491 literature citations. To aid our reconstruction, we developed three optimization-based algorithms, which together comprise Fast Automated Reconstruction of Metabolism (FARM). These algorithms are: LInear MEtabolite Dilution Flux Balance Analysis (limed-FBA), which predicts flux while linearly accounting for metabolite dilution; One-step functional Pruning (OnePrune), which removes blocked reactions with a single compact linear program; and Consistent Reproduction Of growth/no-growth Phenotype (CROP), which reconciles differences between in silico and experimental gene essentiality faster than previous approaches. Against an independent test set of more than 300 essential/non-essential genes that were not used to train the model, the model displays 93% sensitivity and specificity. We also used the model to simulate the biochemical genetics experiments originally performed on Neurospora by comprehensively predicting nutrient rescue of essential genes and synthetic lethal interactions, and we provide detailed pathway-based mechanistic explanations of our predictions. Our model provides a reliable computational framework for the integration and interpretation of ongoing experimental efforts in Neurospora, and we anticipate that our methods will substantially reduce the manual effort required to develop high-quality genome-scale metabolic models for other organisms.

[1]  J. Fincham,et al.  Acetate-nonutilizing mutants of Neurospora crassa: acu-6, the structural gene for PEP carboxykinase and inter-allelic complementation at the acu-6 locus , 1973, Molecular and General Genetics MGG.

[2]  H. Inoue,et al.  Exploring the processes of DNA repair and homologous integration in Neurospora. , 2011, Mutation research.

[3]  R. Mahadevan,et al.  The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. , 2003, Metabolic engineering.

[4]  Adam M. Feist,et al.  A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011 , 2011, Molecular systems biology.

[5]  J. Mora,et al.  Glutamine metabolism and cycling in Neurospora crassa , 1990, Microbiological reviews.

[6]  S. Brody,et al.  The primary biochemical effect of a morphological mutation in Neurospora crassa. , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[7]  B. Palsson,et al.  Systems approach to refining genome annotation , 2006, Proceedings of the National Academy of Sciences.

[8]  Jonathan A. Kelner,et al.  Large-scale identification of genetic design strategies using local search , 2009, Molecular systems biology.

[9]  E. Selker,et al.  DNA methylation and the formation of heterochromatin in Neurospora crassa , 2010, Heredity.

[10]  Christopher M. Crew,et al.  A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors , 2006, Proceedings of the National Academy of Sciences.

[11]  A Videira,et al.  Complex I from the fungus Neurospora crassa. , 1998, Biochimica et biophysica acta.

[12]  R L Weiss,et al.  Acetylglutamate kinase. A mitochondrial feedback-sensitive enzyme of arginine biosynthesis in Neurospora crassa. , 1980, The Journal of biological chemistry.

[13]  Bernhard O. Palsson,et al.  Three factors underlying incorrect in silico predictions of essential metabolic genes , 2015 .

[14]  S. U Phadtare,et al.  Purification and characterisation of xylitol dehydrogenase from Neurospora crassa NCL communication No. 6347. , 2006 .

[15]  R Palacios,et al.  Genetic and biochemical characterization of glutamine synthetase from Neurospora crassa glutamine auxotrophs and their revertants , 1983, Journal of bacteriology.

[16]  Desmond S. Lun,et al.  Interpreting Expression Data with Metabolic Flux Models: Predicting Mycobacterium tuberculosis Mycolic Acid Production , 2009, PLoS Comput. Biol..

[17]  P. Lakin-Thomas,et al.  A pantothenate derivative is covalently bound to mitochondrial proteins in Neurospora crassa. , 1985, European journal of biochemistry.

[18]  li her,et al.  Neurospora crassa , 2013 .

[19]  Peter D. Karp,et al.  Annotation-based inference of transporter function , 2008, ISMB.

[20]  G. Macino,et al.  Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences , 1992, Molecular microbiology.

[21]  Costas D Maranas,et al.  OptStrain: a computational framework for redesign of microbial production systems. , 2004, Genome research.

[22]  Homare Kuwana,et al.  Deficiency of glucose-6-phosphate dehydrogenase in ace-7 strains of Neurospora crassa , 1985 .

[23]  C. Ouzounis,et al.  Expansion of the BioCyc collection of pathway/genome databases to 160 genomes , 2005, Nucleic acids research.

[24]  B. Palsson,et al.  Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods , 2012, Nature Reviews Microbiology.

[25]  S. Klamt,et al.  GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism , 2007, Genome Biology.

[26]  Vinay Satish Kumar,et al.  GrowMatch: An Automated Method for Reconciling In Silico/In Vivo Growth Predictions , 2009, PLoS Comput. Biol..

[27]  Pedro Mendes,et al.  Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network , 2012, BMC Systems Biology.

[28]  Durgadas P. Kasbekar,et al.  The Neurospora compendium: Chromosomal loci , 2001, Journal of Genetics.

[29]  H. Bernstein,et al.  Imidazole Compounds Accumulated by Purine Mutants of Neurospora crassa , 1961 .

[30]  A. Wiest,et al.  The Fungal Genetics Stock Center: a repository for 50 years of fungal genetics research , 2010, Journal of Biosciences.

[31]  W. R. Wiley,et al.  Kinetic Characteristics of the Two Glucose Transport Systems in Neurospora crassa , 1971, Journal of bacteriology.

[32]  Peter D. Karp,et al.  The Pathway Tools software , 2002, ISMB.

[33]  B. Palsson,et al.  Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110 , 1994, Applied and environmental microbiology.

[34]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010 .

[35]  A. Burgard,et al.  Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization , 2003, Biotechnology and bioengineering.

[36]  N. Horowitz,et al.  Methionine synthesis in Neurospora. The isolation of cystathionine. , 1947 .

[37]  Ying Huang,et al.  EFICAz2: enzyme function inference by a combined approach enhanced by machine learning , 2009, BMC Bioinformatics.

[38]  Mehrdad Tamiz,et al.  A review of Goal Programming and its applications , 1995, Ann. Oper. Res..

[39]  Stephen R. Heller,et al.  InChI - the worldwide chemical structure identifier standard , 2013, Journal of Cheminformatics.

[40]  Jeffrey D. Orth,et al.  In silico method for modelling metabolism and gene product expression at genome scale , 2012, Nature Communications.

[41]  G. W. Beadle,et al.  Genic Control of Biochemical Reactions in Neurospora , 1945, The American Naturalist.

[42]  Ines Thiele,et al.  Computationally efficient flux variability analysis , 2010, BMC Bioinformatics.

[43]  S. Seiler,et al.  The genetic basis of cellular morphogenesis in the filamentous fungus Neurospora crassa. , 2003, Molecular biology of the cell.

[44]  H. Holzhütter,et al.  Pruning genome-scale metabolic models to consistent ad functionem networks. , 2007, Genome informatics. International Conference on Genome Informatics.

[45]  Yinbo Qu,et al.  Effects of Oxygen Limitation on Xylose Fermentation, Intracellular Metabolites, and Key Enzymes of Neurospora crassa AS3.1602 , 2008, Applied biochemistry and biotechnology.

[46]  P. Karp Call for an enzyme genomics initiative , 2004, Genome Biology.

[47]  N. Murray,et al.  The distribution of methionine loci in Neurospora crassa , 1960, Heredity.

[48]  E. Selker,et al.  Rearrangement of duplicated DNA in specialized cells of Neurospora , 1987, Cell.

[49]  Kellen L. Olszewski,et al.  Reconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network , 2010, Molecular systems biology.

[50]  Juho Rousu,et al.  A Computational Method for Reconstructing Gapless Metabolic Networks , 2008, BIRD.

[51]  T. Shlomi,et al.  MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks , 2012, Genome Biology.

[52]  Rick L. Stevens,et al.  High-throughput generation, optimization and analysis of genome-scale metabolic models , 2010, Nature Biotechnology.

[53]  Adam M. Feist,et al.  The biomass objective function. , 2010, Current opinion in microbiology.

[54]  Rowland H. Davis Neurospora: Contributions of a Model Organism , 2000 .

[55]  Jamie H. D. Cate,et al.  Induction of lignocellulose degrading enzymes in Neurospora crassa by cellodextrins - eScholarship , 2012 .

[56]  E. Mauceli,et al.  The genome sequence of the filamentous fungus Neurospora crassa , 2003, Nature.

[57]  N. Horowitz,et al.  THE ORNITHINE CYCLE IN NEUROSPORA AND ITS GENETIC CONTROL , 1944 .

[58]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[59]  R. Flavell,et al.  Acetate-nonutilizing Mutants of Neurospora crassa I. Mutant Isolation, Complementation Studies, and Linkage Relationships , 1968, Journal of bacteriology.

[60]  V. Deshpande,et al.  Direct conversion of cellulose/hemicellulose to ethanol by Neurospora crassa , 1986 .

[61]  E. Ruppin,et al.  Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity , 2011, Proceedings of the National Academy of Sciences.

[62]  Ian T. Paulsen,et al.  TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels , 2006, Nucleic Acids Res..

[63]  E. Ruppin,et al.  Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism , 2010, Molecular systems biology.

[64]  Daniel Segrè,et al.  From annotated genomes to metabolic flux models and kinetic parameter fitting. , 2003, Omics : a journal of integrative biology.

[65]  Hugh D. Spence,et al.  Minimum information requested in the annotation of biochemical models (MIRIAM) , 2005, Nature Biotechnology.

[66]  W. Versaw,et al.  A phosphate-repressible, high-affinity phosphate permease is encoded by the pho-5+ gene of Neurospora crassa. , 1995, Gene.

[67]  V. Deshpande,et al.  Cellulase and ethanol production from cellulose by Neurospora crassa , 1983 .

[68]  A. Radford,et al.  Metabolic highways of Neurospora crassa revisited. , 2004, Advances in genetics.

[69]  Peter D. Karp,et al.  Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology , 2015, Briefings Bioinform..

[70]  Costas D. Maranas,et al.  Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data , 2010, BMC Systems Biology.

[71]  Eytan Ruppin,et al.  Flux balance analysis accounting for metabolite dilution , 2010, Genome Biology.

[72]  Lifeng Chen,et al.  Distribution of orphan metabolic activities. , 2007, Trends in biotechnology.

[73]  Michael Freitag,et al.  Lessons from the Genome Sequence of Neurospora crassa: Tracing the Path from Genomic Blueprint to Multicellular Organism , 2004, Microbiology and Molecular Biology Reviews.

[74]  Peter D. Karp,et al.  An Evidence Ontology for Use in Pathway/Genome Databases , 2003, Pacific Symposium on Biocomputing.

[75]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[76]  Melanie I. Stefan,et al.  BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models , 2010, BMC Systems Biology.

[77]  Natapol Pornputtapong,et al.  Reconstruction of Genome-Scale Active Metabolic Networks for 69 Human Cell Types and 16 Cancer Types Using INIT , 2012, PLoS Comput. Biol..

[78]  Peter D. Karp,et al.  Machine learning methods for metabolic pathway prediction , 2010 .

[79]  Huimin Zhao,et al.  Heterologous Expression, Purification, and Characterization of a Highly Active Xylose Reductase from Neurospora crassa , 2005, Applied and Environmental Microbiology.

[80]  D D Perkins,et al.  Perspectives Anecdotal , Historical and Critical Commentaries on Genetics , 2002 .

[81]  Jason A. Papin,et al.  Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism , 2011, Molecular systems biology.

[82]  B. Palsson,et al.  Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth , 2002, Nature.

[83]  J B Courtright,et al.  Characteristics of a glycerol utilization mutant of Neurospora crassa , 1975, Journal of bacteriology.

[84]  Rick L Stevens,et al.  iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations , 2009, Genome Biology.

[85]  R. Davis,et al.  Genetics of arginine biosynthesis in Neurospora crassa. , 1979, Genetics.

[86]  J. Nielsen,et al.  Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger , 2008, Molecular systems biology.

[87]  Jay C Dunlap,et al.  The circadian clock of Neurospora crassa. , 2012, FEMS microbiology reviews.

[88]  Vinay Satish Kumar,et al.  Optimization based automated curation of metabolic reconstructions , 2007, BMC Bioinformatics.

[89]  G. Beadle,et al.  Genetic Control of Biochemical Reactions in Neurospora: An "Aminobenzoicless" Mutant. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Markus J. Herrgård,et al.  Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. , 2004, Genome research.

[91]  D. Vitkup,et al.  Predicting genes for orphan metabolic activities using phylogenetic profiles , 2006, Genome Biology.

[92]  Roman L. Weil,et al.  Technical Note - "Linear" Programming with Absolute-Value Functionals , 1971, Oper. Res..

[93]  Peter D. Karp,et al.  Construction and completion of flux balance models from pathway databases , 2012, Bioinform..

[94]  N. Murray,et al.  Cysteine mutant strains of Neurospora. , 1965, Genetics.

[95]  R. L. Weiss,et al.  Measurements of cytoplasmic and vacuolar pH in Neurospora using nitrogen-15 nuclear magnetic resonance spectroscopy. , 1983, Biochemistry.

[96]  Doron Rapaport,et al.  Neurospora crassa as a model organism for mitochondrial biogenesis. , 2007, Methods in molecular biology.

[97]  W A Scott,et al.  Physical properties of glucose 6-phosphate dehydrogenase from Neurospora crassa. , 1971, The Journal of biological chemistry.

[98]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[99]  Kevin McCluskey,et al.  Enabling a community to dissect an organism: overview of the Neurospora functional genomics project. , 2007, Advances in genetics.

[100]  Homare Kuwana,et al.  GENETICS AND SOME CHARACTERISTICS OF ACETATE- REQUIRING STRAINS IN NEUROSPORA CRASSA , 1979 .

[101]  S. Roseman,et al.  A derepressible active transport system for glucose in Neurospora crassa. , 1971, The Journal of biological chemistry.

[102]  F. A. M. Alberghina,et al.  Growth regulation in Neurospora crassa effects of nutrients and of temperature , 1973, Archiv für Mikrobiologie.

[103]  W. R. Wiley,et al.  Regulation of Sugar Transport in Neurospora crassa , 1971, Journal of bacteriology.

[104]  Jamie H. D. Cate,et al.  Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa , 2009, Proceedings of the National Academy of Sciences.

[105]  D. Torchia,et al.  Use of 31P nuclear magnetic resonance spectroscopy and 14C fluorography in studies of glycolysis and regulation of pyruvate kinase in Streptococcus lactis , 1984, Journal of bacteriology.

[106]  E. Tatum,et al.  Glucose-6-phosphate dehydrogenase and Neurospora morphology. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[107]  Yaniv Lubling,et al.  An integrated open framework for thermodynamics of reactions that combines accuracy and coverage , 2012, Bioinform..

[108]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[109]  P. May,et al.  An integrative approach towards completing genome-scale metabolic networks. , 2009, Molecular bioSystems.

[110]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[111]  Matthew D. Jankowski,et al.  Group contribution method for thermodynamic analysis of complex metabolic networks. , 2008, Biophysical journal.

[112]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[113]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[114]  Jens Nielsen,et al.  Evolutionary programming as a platform for in silico metabolic engineering , 2005, BMC Bioinformatics.