Maximum Matching in Turnstile Streams

We consider the unweighted bipartite maximum matching problem in the one-pass turnstile streaming model where the input stream consists of edge insertions and deletions. In the insertion-only model, a one-pass 2-approximation streaming algorithm can be easily obtained with space O(n logn), where n denotes the number of vertices of the input graph. We show that no such result is possible if edge deletions are allowed, even if space O(n3/2 − δ) is granted, for every δ > 0. Specifically, for every 0 ≤ e ≤ 1, we show that in the one-pass turnstile streaming model, in order to compute a O(n e )-approximation, space Ω(n3/2 − 4e) is required for constant error randomized algorithms, and, up to logarithmic factors, space \(\tilde{\mathrm{O}}( n^{2-2\epsilon} )\) is sufficient.

[1]  Andrew McGregor,et al.  Graph stream algorithms: a survey , 2014, SGMD.

[2]  Andrew McGregor,et al.  Finding Graph Matchings in Data Streams , 2005, APPROX-RANDOM.

[3]  Claire Mathieu,et al.  Maximum Matching in Semi-streaming with Few Passes , 2011, APPROX-RANDOM.

[4]  Yin Tat Lee,et al.  Single Pass Spectral Sparsification in Dynamic Streams , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[5]  Krzysztof Onak,et al.  Streaming Algorithms for Estimating the Matching Size in Planar Graphs and Beyond , 2015, SODA.

[6]  Qin Zhang,et al.  Communication Complexity of Approximate Matching in Distributed Graphs , 2015, STACS.

[7]  Andrew McGregor,et al.  Dynamic Graphs in the Sliding-Window Model , 2013, ESA.

[8]  Yang Li,et al.  Tight Bounds for Linear Sketches of Approximate Matchings , 2015, ArXiv.

[9]  Mariano Zelke,et al.  Weighted Matching in the Semi-Streaming Model , 2007, Algorithmica.

[10]  Ashish Goel,et al.  On the communication and streaming complexity of maximum bipartite matching , 2012, SODA.

[11]  Joan Feigenbaum,et al.  On graph problems in a semi-streaming model , 2005, Theor. Comput. Sci..

[12]  Henry Lin,et al.  Online Bipartite Perfect Matching With Augmentations , 2009, IEEE INFOCOM 2009.

[13]  Mikhail Kapralov,et al.  Better bounds for matchings in the streaming model , 2012, SODA.

[14]  Leah Epstein,et al.  Improved Approximation Guarantees for Weighted Matching in the Semi-streaming Model , 2009, SIAM J. Discret. Math..

[15]  Qin Zhang,et al.  Communication Complexity of Approximate Maximum Matching in Distributed Graph Data , 2013 .

[16]  Sudipto Guha,et al.  Analyzing graph structure via linear measurements , 2012, SODA.

[17]  Sudipto Guha,et al.  Spectral Sparsification in Dynamic Graph Streams , 2013, APPROX-RANDOM.

[18]  Dariusz Leniowski,et al.  Online Bipartite Matching in Offline Time , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[19]  David P. Woodruff,et al.  Turnstile streaming algorithms might as well be linear sketches , 2014, STOC.

[20]  Anand Srivastav,et al.  Bipartite Matching in the Semi-streaming Model , 2012, Algorithmica.

[21]  Venkatesan Guruswami,et al.  Superlinear Lower Bounds for Multipass Graph Processing , 2013, Computational Complexity Conference.

[22]  Michael Crouch,et al.  Improved Streaming Algorithms for Weighted Matching, via Unweighted Matching , 2014, APPROX-RANDOM.

[23]  Sanjeev Khanna,et al.  Approximating matching size from random streams , 2014, SODA.

[24]  S. Muthukrishnan,et al.  Data streams: algorithms and applications , 2005, SODA '03.

[25]  Hossein Jowhari,et al.  Tight bounds for Lp samplers, finding duplicates in streams, and related problems , 2010, PODS.

[26]  David P. Woodruff,et al.  Spanners and sparsifiers in dynamic streams , 2014, PODC.

[27]  Sudipto Guha,et al.  Linear programming in the semi-streaming model with application to the maximum matching problem , 2011, Inf. Comput..