Analysis of the GATA-1 Gene Promoter and Globin Locus Control Region Elements by in Vivo Footprinting

[1]  S. Orkin,et al.  Guanine-adenine ligation-mediated PCR in vivo footprinting. , 1997, Methods.

[2]  Paul Tempst,et al.  Erythroid transcription factor NF-E2 is a haematopoietic-specific basic–leucine zipper protein , 1993, Nature.

[3]  S. Orkin,et al.  In vivo protein-DNA interactions at hypersensitive site 3 of the human beta-globin locus control region. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[4]  S. Orkin,et al.  In vivo footprinting of the human alpha-globin locus upstream regulatory element by guanine and adenine ligation-mediated polymerase chain reaction , 1992, Molecular and cellular biology.

[5]  N. Proudfoot,et al.  The LCR-like alpha-globin positive regulatory element functions as an enhancer in transiently transfected cells during erythroid differentiation. , 1992, Nucleic acids research.

[6]  G. Felsenfeld,et al.  Chromatin as an essential part of the transcriptional mechanim , 1992, Nature.

[7]  T. Ikuta,et al.  In vivo protein-DNA interactions at the beta-globin gene locus. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[8]  P. Reddy,et al.  Protein-DNA interactions in vivo of an erythroid-specific, human beta-globin locus enhancer. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[9]  A. Jarman,et al.  Characterization of the major regulatory element upstream of the human alpha-globin gene cluster , 1991, Molecular and cellular biology.

[10]  B. Forget,et al.  Negative regulation of globin gene expression during megakaryocytic differentiation of a human erythroleukemic cell line , 1991, Molecular and cellular biology.

[11]  F. Grosveld,et al.  The 5′HS2 of the globin locus control region enhances transcription through the interaction of a multimeric complex binding at two functionally distinct NF‐E2 binding sites. , 1991, The EMBO journal.

[12]  S. Orkin,et al.  Functional analysis and in vivo footprinting implicate the erythroid transcription factor GATA-1 as a positive regulator of its own promoter. , 1991, Genes & development.

[13]  T. Ley,et al.  Functional properties of the beta-globin locus control region in K562 erythroleukemia cells. , 1991, Blood.

[14]  F. Grosveld,et al.  Hypersensitive site 4 of the human β globin locus control region , 1991 .

[15]  S. Orkin,et al.  Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1 , 1991, Nature.

[16]  S. Orkin Globin gene regulation and switching: Circa 1990 , 1990, Cell.

[17]  Y. Kan,et al.  Synergistic enhancement of globin gene expression by activator protein-1-like proteins. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[18]  G. Stamatoyannopoulos,et al.  Beta-globin locus activation regions: conservation of organization, structure, and function. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Nienhuis,et al.  Inducibility of the HS II enhancer depends on binding of an erythroid specific nuclear protein. , 1990, Nucleic acids research.

[20]  T. Ley,et al.  Conservation of the primary structure, organization, and function of the human and mouse beta-globin locus-activating regions. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[21]  A. Jarman,et al.  A major positive regulatory region located far upstream of the human alpha-globin gene locus. , 1990, Genes & development.

[22]  C. Schildkraut,et al.  Erythroid-specific nuclease-hypersensitive sites flanking the human beta-globin domain , 1990, Molecular and cellular biology.

[23]  F. Grosveld,et al.  Detailed analysis of the site 3 region of the human beta‐globin dominant control region. , 1990, The EMBO journal.

[24]  M. Plumb,et al.  Synergy between the NF-E1 erythroid-specific transcription factor and the CACCC factor in the erythroid-specific promoter of the human porphobilinogen deaminase gene , 1990, Molecular and cellular biology.

[25]  F. Grosveld,et al.  The beta‐globin dominant control region: hypersensitive site 2. , 1990, The EMBO journal.

[26]  A. Wilkie,et al.  Alpha-thalassemia caused by a large (62 kb) deletion upstream of the human alpha globin gene cluster. , 1990, Blood.

[27]  A. Nienhuis,et al.  Tandem AP-1-binding sites within the human beta-globin dominant control region function as an inducible enhancer in erythroid cells. , 1990, Genes & development.

[28]  F. Grosveld,et al.  beta-globin dominant control region interacts differently with distal and proximal promoter elements. , 1990, Genes & development.

[29]  W. Vainchenker,et al.  Megakaryocytic and erythrocytic lineages share specific transcription factors , 1990, Nature.

[30]  Stuart H. Orkin,et al.  Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages , 1990, Nature.

[31]  N. Proudfoot,et al.  A factor binding GATAAG confers tissue specificity on the promoter of the human zeta-globin gene. , 1990, Nucleic acids research.

[32]  B. Wold,et al.  In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. , 1990, Science.

[33]  T. Graf,et al.  The v-myb oncogene product binds to and activates the promyelocyte-specific mim-1 gene , 1989, Cell.

[34]  B. Alter,et al.  Gamma delta beta-thalassemia due to a de novo mutation deleting the 5' beta-globin gene activation-region hypersensitive sites. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[35]  G. Felsenfeld,et al.  The erythroid-specific transcription factor eryf1: A new finger protein , 1989, Cell.

[36]  Shih-Feng Tsai,et al.  Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells , 1989, Nature.

[37]  D. Tuan,et al.  An erythroid-specific, developmental-stage-independent enhancer far upstream of the human "beta-like globin" genes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[38]  S. Orkin,et al.  Increased γ-globin expression in a nondeletion HPFH mediated by an erythroid-specif ic DNA-binding factor , 1989, Nature.

[39]  F. Grosveld,et al.  Two tissue-specific factors bind the erythroid promoter of the human porphobilinogen deaminase gene. , 1989, Nucleic acids research.

[40]  M. Plumb,et al.  GATAAG; a cis-control region binding an erythroid-specific nuclear factor with a role in globin and non-globin gene expression. , 1989, Nucleic acids research.

[41]  F. Grosveld,et al.  The human beta‐globin promoter; nuclear protein factors and erythroid specific induction of transcription. , 1988, The EMBO journal.

[42]  M. Reitman,et al.  Mutational analysis of the chicken beta-globin enhancer reveals two positive-acting domains. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Reitman,et al.  An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[44]  R. Schüle,et al.  Cooperativity of the glucocorticoid receptor and the CACCC-box binding factor , 1988, Nature.

[45]  G. Kollias,et al.  Position-independent, high-level expression of the human β-globin gene in transgenic mice , 1987, Cell.

[46]  W. C. Forrester,et al.  Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. , 1987, Nucleic acids research.

[47]  M. Vigneron,et al.  In vitro binding of several cell-specific and ubiquitous nuclear proteins to the GT-I motif of the SV40 enhancer. , 1987, Genes & development.

[48]  D. Tuan,et al.  The "beta-like-globin" gene domain in human erythroid cells. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Clegg,et al.  K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin , 1979, Nature.

[50]  L. Zon,et al.  The major human erythroid DNA-binding protein (GF-1): primary sequence and localization of the gene to the X chromosome. , 1990, Proceedings of the National Academy of Sciences of the United States of America.