Single‐Molecule Electronic Biosensors: Principles and Applications

[1]  A. Ivanov,et al.  Measuring conductance switching in single proteins using quantum tunneling , 2022, Science advances.

[2]  G. Weiss,et al.  Single-molecule Taq DNA polymerase dynamics , 2022, Science advances.

[3]  Andrew P. Hodges,et al.  Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity , 2022, Proceedings of the National Academy of Sciences.

[4]  Bintian Zhang,et al.  Electronic Transport in Molecular Wires of Precisely Controlled Length Built from Modular Proteins. , 2022, ACS nano.

[5]  P. Solomon,et al.  Ion sensing with single charge resolution using sub–10-nm electrical double layer–gated silicon nanowire transistors , 2021, Science advances.

[6]  J. Tour,et al.  Large‐Scale Syntheses of 2D Materials: Flash Joule Heating and Other Methods , 2021, Advanced materials.

[7]  J. Zou,et al.  Advances and Frontiers in Single‐Walled Carbon Nanotube Electronics , 2021, Advanced science.

[8]  Wenzhe Liu,et al.  Complete Mapping of DNA‐Protein Interactions at the Single‐Molecule Level , 2021, Advanced science.

[9]  Bintian Zhang,et al.  Probing Bioelectronic Connections Using Streptavidin Molecules with Modified Valency. , 2021, Journal of the American Chemical Society.

[10]  Jinlong Yang,et al.  Unveiling the full reaction path of the Suzuki–Miyaura cross-coupling in a single-molecule junction , 2021, Nature Nanotechnology.

[11]  Can Wang,et al.  Rapid and Sensitive Detection of Mycobacterium tuberculosis by an Enhanced Nanobiosensor. , 2021, ACS sensors.

[12]  Lidong Li,et al.  Revealing Conformational Transition Dynamics of Photosynthetic Proteins in Single-Molecule Electrical Circuits. , 2021, The journal of physical chemistry letters.

[13]  K. Houk,et al.  Electric field–catalyzed single-molecule Diels-Alder reaction dynamics , 2021, Science Advances.

[14]  D. Hall,et al.  Hitting the diagnostic sweet spot: Point-of-care SARS-CoV-2 salivary antigen testing with an off-the-shelf glucometer , 2020, Biosensors and Bioelectronics.

[15]  Zhi Zheng,et al.  Overcome Debye Length Limitations for Biomolecule Sensing Based on Field Effective Transistors † , 2020 .

[16]  J. Leburton,et al.  Microscopic Detection Analysis of Single Molecules in MoS2 Membrane Nanopores. , 2020, ACS nano.

[17]  H. Sone,et al.  Design and Fabrication of Silicon Nanowire-Based Biosensors with Integration of Critical Factors: Toward Ultrasensitive Specific Detection of Biomolecules. , 2020, ACS applied materials & interfaces.

[18]  D. Porath,et al.  Backbone charge transport in double-stranded DNA , 2020, Nature Nanotechnology.

[19]  V. Timoshenko,et al.  Effect of annealing temperature on thermo‐diffusional boron doping of silicon nanowire arrays probed by Raman spectroscopy , 2020 .

[20]  R. Sahin,et al.  Single-molecule-resolution ultrafast near-field optical microscopy via plasmon lifetime extension , 2020, 2007.01131.

[21]  Jianfeng Dai,et al.  A DNA Aptamer Based Method for Detection of SARS-CoV-2 Nucleocapsid Protein , 2020, Virologica Sinica.

[22]  A. Radenović,et al.  Wafer‐Scale Fabrication of Nanopore Devices for Single‐Molecule DNA Biosensing using MoS 2 , 2020 .

[23]  Yanling Song,et al.  Discovery of Aptamers Targeting the Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein , 2020, Analytical chemistry.

[24]  B. Fang,et al.  Coenzyme Coupling Boosts Charge Transport through Single Bioactive Enzyme Junctions , 2020, iScience.

[25]  Wenjun Liu,et al.  Recent Advances of 2D Materials in Nonlinear Photonics and Fiber Lasers , 2020, Advanced Optical Materials.

[26]  Xuefeng Guo,et al.  Single-Molecule Electrical Detection: A Promising Route toward the Fundamental Limits of Chemistry and Life Science. , 2020, Accounts of chemical research.

[27]  A. Radenović,et al.  Transverse Detection of DNA Using a MoS2 Nanopore. , 2019, Nano letters.

[28]  Michael L. Norton,et al.  A review on nanomaterial-based field effect transistor technology for biomarker detection , 2019, Microchimica Acta.

[29]  Dong Sung Choi,et al.  Intact Crystalline Semiconducting Graphene Nanoribbons from Unzipping Nitrogen-Doped Carbon Nanotubes. , 2019, ACS applied materials & interfaces.

[30]  Wen-Yih Chen,et al.  Neutralized chimeric DNA probe for the improvement of GC-rich RNA detection specificity on the nanowire field-effect transistor , 2019, Scientific Reports.

[31]  X. Duan,et al.  Nanowire Electronics: From Nanoscale to Macroscale. , 2019, Chemical reviews.

[32]  R. Singh,et al.  A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives , 2019, Nano Research.

[33]  S. Lindsay,et al.  Engineering an Enzyme for Direct Electrical Monitoring of Activity , 2019, bioRxiv.

[34]  Bergoi Ibarlucea,et al.  Hybrid Silicon Nanowire Devices and Their Functional Diversity , 2019, Advanced science.

[35]  S. Lindsay,et al.  Electronic Decay Length in a Protein Molecule. , 2019, Nano letters.

[36]  Tianjiao Wang,et al.  Direct Measurement of π Coupling at the Single-Molecule Level using a Carbon Nanotube Force Sensor. , 2018, Nano letters.

[37]  M. Anantram,et al.  Detection and identification of genetic material via single-molecule conductance , 2018, Nature Nanotechnology.

[38]  Yang Yang,et al.  Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing , 2018, Science.

[39]  Steven B. Warren,et al.  Electrically Controllable Single-Point Covalent Functionalization of Spin-Cast Carbon-Nanotube Field-Effect Transistor Arrays. , 2018, ACS nano.

[40]  Yafei Zhang,et al.  Highly Sensitive Broadband Single‐Walled Carbon Nanotube Photodetectors Enhanced by Separated Graphene Nanosheets , 2018, Advanced Optical Materials.

[41]  Wen-Yih Chen,et al.  Synergetic improvements of sensitivity and specificity of nanowire field effect transistor gene chip by designing neutralized DNA as probe , 2018, Scientific Reports.

[42]  L. Torsi,et al.  Single-molecule detection with a millimetre-sized transistor , 2018, Nature Communications.

[43]  R. Ruoff,et al.  Highly Oriented Monolayer Graphene Grown on a Cu/Ni(111) Alloy Foil. , 2018, ACS nano.

[44]  Jean-Pierre Leburton,et al.  Large Scale Parallel DNA Detection by Two-Dimensional Solid-State Multipore Systems. , 2018, ACS sensors.

[45]  C. Fan,et al.  Advances in Nanowire Transistor‐Based Biosensors , 2018 .

[46]  N. Seeman,et al.  Charge splitters and charge transport junctions based on guanine quadruplexes , 2018, Nature Nanotechnology.

[47]  Kazuya Watanabe,et al.  Electrochemically active bacteria sense electrode potentials for regulating catabolic pathways , 2018, Nature Communications.

[48]  Cees Dekker,et al.  Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore , 2018, ACS nano.

[49]  Yuelin Wang,et al.  Wafer-level and highly controllable fabricated silicon nanowire transistor arrays on (111) silicon-on-insulator (SOI) wafers for highly sensitive detection in liquid and gaseous environments , 2018, Nano Research.

[50]  S. Sanvito,et al.  Computational investigation of label free detection of biomolecules based on armchair graphene nanoribbon , 2018 .

[51]  Daniel J. Rizzo,et al.  Hierarchical On-Surface Synthesis of Graphene Nanoribbon Heterojunctions. , 2018, ACS nano.

[52]  M. Drndić,et al.  Signal and Noise in FET-Nanopore Devices. , 2018, ACS sensors.

[53]  Hiroyuki Noji,et al.  Direct Measurement of Single-Molecule Adenosine Triphosphatase Hydrolysis Dynamics. , 2017, ACS nano.

[54]  J. Li,et al.  Single Nucleotide Polymorphism Genotyping in Single‐Molecule Electronic Circuits , 2017, Advanced science.

[55]  K. Gaus,et al.  Towards single molecule biosensors using super-resolution fluorescence microscopy. , 2017, Biosensors & bioelectronics.

[56]  Steven B. Warren,et al.  Electrostatic melting in a single-molecule field-effect transistor with applications in genomic identification , 2017, Nature Communications.

[57]  Yuelin Wang,et al.  Multiplexed detection of lung cancer biomarkers in patients serum with CMOS-compatible silicon nanowire arrays. , 2017, Biosensors & bioelectronics.

[58]  Chunhui Gu,et al.  Single-Molecule Electrical Detection with Real-Time Label-Free Capability and Ultrasensitivity , 2017 .

[59]  T. Chen,et al.  Optical Super-Resolution Imaging of Surface Reactions. , 2017, Chemical reviews.

[60]  G. Schneider,et al.  Sensing at the Surface of Graphene Field‐Effect Transistors , 2017, Advanced materials.

[61]  Vineet K. Sharma,et al.  Comparative Analysis of Fruit Metabolites and Pungency Candidate Genes Expression between Bhut Jolokia and Other Capsicum Species , 2016, PloS one.

[62]  Haina Ci,et al.  Direct Measurement of Single-Molecule DNA Hybridization Dynamics with Single-Base Resolution. , 2016, Angewandte Chemie.

[63]  G. Weiss,et al.  Single Molecule Bioelectronics and Their Application to Amplification-Free Measurement of DNA Lengths , 2016, Biosensors.

[64]  Steven B. Warren,et al.  Single-Molecule Reaction Chemistry in Patterned Nanowells , 2016, Nano letters.

[65]  Chuancheng Jia,et al.  Molecular-Scale Electronics: From Concept to Function. , 2016, Chemical reviews.

[66]  G. Weiss,et al.  Processive Incorporation of Deoxynucleoside Triphosphate Analogs by Single-Molecule DNA Polymerase I (Klenow Fragment) Nanocircuits. , 2015, Journal of the American Chemical Society.

[67]  T. Tahara,et al.  Microsecond protein dynamics observed at the single-molecule level , 2015, Nature Communications.

[68]  T. Strick,et al.  A dynamic DNA-repair complex observed by correlative single-molecule nanomanipulation and fluorescence , 2015, Nature Structural &Molecular Biology.

[69]  Ke Liu,et al.  Identification of single nucleotides in MoS2 nanopores. , 2015, Nature nanotechnology.

[70]  Wei Zhou,et al.  General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. , 2015, Nano letters.

[71]  Xianping Chen,et al.  Carbon nanotube based biosensors , 2015 .

[72]  Fan Yang,et al.  Silicon nanowire-transistor biosensor for study of molecule-molecule interactions , 2014 .

[73]  Jindong Wang,et al.  Point decoration of silicon nanowires: an approach toward single-molecule electrical detection. , 2014, Angewandte Chemie.

[74]  K. Banerjee,et al.  MoS₂ field-effect transistor for next-generation label-free biosensors. , 2014, ACS nano.

[75]  C Raillon,et al.  Detecting the translocation of DNA through a nanopore using graphene nanoribbons. , 2013, Nature nanotechnology.

[76]  Xuefeng Guo Single‐Molecule Electrical Biosensors Based on Single‐Walled Carbon Nanotubes , 2013, Advanced materials.

[77]  Hagit Peretz-Soroka,et al.  Optically-gated self-calibrating nanosensors: monitoring pH and metabolic activity of living cells. , 2013, Nano letters.

[78]  Gregory A Weiss,et al.  Electronic measurements of single-molecule processing by DNA polymerase I (Klenow fragment). , 2013, Journal of the American Chemical Society.

[79]  J. Irudayaraj,et al.  Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[80]  William L. Hwang,et al.  ISWI Remodelers Slide Nucleosomes with Coordinated Multi-Base-Pair Entry Steps and Single-Base-Pair Exit Steps , 2013, Cell.

[81]  M. Steigerwald,et al.  Building high-throughput molecular junctions using indented graphene point contacts. , 2012, Angewandte Chemie.

[82]  F. Patolsky,et al.  Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices. , 2012, Nano letters.

[83]  Xiaogang Liu,et al.  Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification. , 2012, Accounts of chemical research.

[84]  Philip G. Collins,et al.  Single-Molecule Lysozyme Dynamics Monitored by an Electronic Circuit , 2012, Science.

[85]  Charles M. Lieber,et al.  Local electrical potential detection of DNA by nanowire-nanopore sensors , 2011, Nature nanotechnology.

[86]  René Kizek,et al.  Methods for carbon nanotubes synthesis—review , 2011 .

[87]  Colin Nuckolls,et al.  Debye screening in single-molecule carbon nanotube field-effect sensors. , 2011, Nano letters.

[88]  Lidan You,et al.  Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity. , 2011, ACS nano.

[89]  Xiaohong Fang,et al.  Single-molecule detection of proteins using aptamer-functionalized molecular electronic devices. , 2011, Angewandte Chemie.

[90]  Kwang S. Kim,et al.  Fast DNA sequencing with a graphene-based nanochannel device. , 2011, Nature nanotechnology.

[91]  K. Shepard,et al.  Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. , 2011, Nature nanotechnology.

[92]  U. Şeker,et al.  Material Binding Peptides for Nanotechnology , 2011, Molecules.

[93]  X. J. Zhang,et al.  Tunable electrical properties of silicon nanowires via surface-ambient chemistry. , 2010, ACS nano.

[94]  J. Barton,et al.  Mechanisms for DNA charge transport. , 2010, Chemical reviews.

[95]  Sören Doose,et al.  Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[96]  Chen-Zhong Li,et al.  Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications , 2009 .

[97]  Faisal A. Aldaye,et al.  Assembling Materials with DNA as the Guide , 2008, Science.

[98]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[99]  James Hone,et al.  Conductivity of a single DNA duplex bridging a carbon nanotube gap. , 2008, Nature nanotechnology.

[100]  A. Star,et al.  Carbon Nanotube Field‐Effect‐Transistor‐Based Biosensors , 2007 .

[101]  Micah J. McCauley,et al.  Quantifying force-dependent and zero-force DNA intercalation by single-molecule stretching , 2007, Nature Methods.

[102]  Kenzo Maehashi,et al.  Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. , 2007, Analytical chemistry.

[103]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[104]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[105]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[106]  M. Steigerwald,et al.  Dependence of single-molecule junction conductance on molecular conformation , 2006, Nature.

[107]  Ashok Mulchandani,et al.  Nanowire‐Based Electrochemical Biosensors , 2006 .

[108]  James Hone,et al.  Covalently Bridging Gaps in Single-Walled Carbon Nanotubes with Conducting Molecules , 2006, Science.

[109]  Alexandre Restrepo,et al.  Aptasensor development: elucidation of critical parameters for optimal aptamer performance. , 2004, Analytical chemistry.

[110]  Qian Wang,et al.  An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. , 2004, Journal of the American Chemical Society.

[111]  J. Barton,et al.  Long-range DNA charge transport. , 2003, The Journal of organic chemistry.

[112]  Milan N Stojanovic,et al.  Aptamer-based colorimetric probe for cocaine. , 2002, Journal of the American Chemical Society.

[113]  T. Ha,et al.  Single-molecule fluorescence resonance energy transfer. , 2001, Methods.

[114]  J. Neefjes,et al.  From fixed to FRAP: measuring protein mobility and activity in living cells , 2001, Nature Cell Biology.

[115]  Cees Dekker,et al.  Electron–electron correlations in carbon nanotubes , 1998, Nature.

[116]  J. J. Clair SELECTIVE DETECTION OF THE CARBOHYDRATE-BOUND STATE OF CONCANVALIN A AT THE SINGLE MOLECULE LEVEL , 1997 .