Neutron structure of type‐III antifreeze protein allows the reconstruction of AFP–ice interface
暂无分享,去创建一个
Michael Haertlein | Alberto Podjarny | T. Petrova | E. Howard | A. Mitschler | A. Podjarny | A. G. Salvay | M. Blakeley | Andre Mitschler | Tatiana Petrova | Eduardo I. Howard | Matthew P. Blakeley | Isabelle Petit‐ Haertlein | Stuart J. Fisher | Alexandra Cousido‐ Siah | Andrés G. Salvay | Alexandre Popov | Christoph Muller‐ Dieckmann | M. Haertlein | S. Fisher | I. Haertlein | A. C. Siah | A. Popov | C. M. Dieckmann
[1] P. Davies,et al. Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging. , 2010, Biochemistry.
[2] A. McDermott,et al. Protein–ice interaction of an antifreeze protein observed with solid-state NMR , 2010, Proceedings of the National Academy of Sciences.
[3] Peter L Davies,et al. Structure and function of antifreeze proteins. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[4] R. Margesin,et al. Cold-loving microbes, plants, and animals—fundamental and applied aspects , 2007, Naturwissenschaften.
[5] Z. Jia,et al. Ice-binding surface of fish type III antifreeze. , 1999, Biophysical journal.
[6] E. Howard,et al. Perdeuteration, purification, crystallization and preliminary neutron diffraction of an ocean pout type III antifreeze protein. , 2009, Acta crystallographica. Section F, Structural biology and crystallization communications.
[8] M. Weiss,et al. Global Indicators of X-ray Data Quality , 2000 .
[9] P. Emsley,et al. Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.
[10] Javier Santos,et al. Structure and interactions of fish type III antifreeze protein in solution. , 2010, Biophysical journal.
[11] H. Kowarzyk. Structure and Function. , 1910, Nature.
[12] John R. Helliwell,et al. LSCALE - the new normalization, scaling and absorption correction program in the Daresbury Laue software suite , 1999 .
[13] Manfred S. Weiss,et al. Global indicators of X-ray data quality , 2001 .
[14] C. Hew,et al. Biochemistry of fish antifreeze proteins , 1990, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
[15] J. Navaza,et al. AMoRe: an automated package for molecular replacement , 1994 .
[16] Zongchao Jia,et al. Antifreeze proteins: an unusual receptor-ligand interaction. , 2002, Trends in biochemical sciences.
[17] Paul D Adams,et al. Joint X-ray and neutron refinement with phenix.refine. , 2010, Acta crystallographica. Section D, Biological crystallography.
[18] P. Wilson. Explaining thermal hysteresis by the Kelvin effect , 1993 .
[19] Collaborative Computational,et al. The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.
[20] W. Kabsch. A solution for the best rotation to relate two sets of vectors , 1976 .
[21] W. Delano. The PyMOL Molecular Graphics System , 2002 .
[22] E. Howard,et al. Neutron macromolecular crystallography with LADI-III. , 2010, Acta crystallographica. Section D, Biological crystallography.
[23] A. McDermott,et al. Solid-state NMR on a type III antifreeze protein in the presence of ice. , 2008, Journal of the American Chemical Society.
[24] A. Podjarny,et al. Neutron macromolecular crystallography , 2009 .
[25] Javier Santos,et al. Electro-Optical Properties Characterization of Fish Type III Antifreeze Protein , 2007, Journal of biological physics.
[26] P. Lillford,et al. Understanding the mechanism of ice binding by type III antifreeze proteins. , 2001, Journal of molecular biology.
[27] Jack Snoeyink,et al. Nucleic Acids Research Advance Access published April 22, 2007 MolProbity: all-atom contacts and structure validation for proteins and nucleic acids , 2007 .
[28] A. H. Wang,et al. The refined crystal structure of an eel pout type III antifreeze protein RD1 at 0.62-A resolution reveals structural microheterogeneity of protein and solvation. , 2003, Biophysical journal.
[29] Erlend Kristiansen,et al. The mechanism by which fish antifreeze proteins cause thermal hysteresis. , 2005, Cryobiology.
[30] B. Stec,et al. On the nature of a glassy state of matter in a hydrated protein: Relation to protein function , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[31] J. Raymond,et al. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. , 1977, Proceedings of the National Academy of Sciences of the United States of America.
[32] F. Sicheri,et al. Identification of the ice-binding surface on a type III antifreeze protein with a "flatness function" algorithm. , 1998, Biophysical journal.
[33] J. W. Campbell,et al. LAUEGEN version 6.0 and INTLDM , 1998 .
[34] C. Dayananda,et al. Properties, potentials, and prospects of antifreeze proteins. , 2008, Critical reviews in biotechnology.
[35] G. Murshudov,et al. Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.
[36] A. Devries. Glycoproteins as Biological Antifreeze Agents in Antarctic Fishes , 1971, Science.