1984-2004 - 20 Years of Multiobjective Metaheuristics. But What About the Solution of Combinatorial Problems with Multiple Objectives?

After 20 years of development of multiobjective metaheuristics the procedures for solving multiple objective combinatorial optimization problems are generally the result of a blend of evolutionary, neighborhood search, and problem dependent components. Indeed, even though the first procedures were direct adaptations of single objective metaheuristics inspired by evolutionary algorithms or neighborhood search algorithms, hybrid procedures have been introduced very quickly. This paper discusses hybridations found in the literature and mentions recently introduced metaheuristic principles.

[1]  Xavier Gandibleux,et al.  The Supported Solutions Used as a Genetic Information in a Population Heuristics , 2001, EMO.

[2]  M. Hansen,et al.  Tabu search for multiobjective combinatorial optimization : TAMOCO , 2000 .

[3]  Anthony Przybylski,et al.  Seek and Cut Algorithm Computing Minimal and Maximal Complete Efficient Solution Sets for the Biobjective Assignment Problem , 2004 .

[4]  H. Ishibuchi,et al.  MOGA: multi-objective genetic algorithms , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[5]  Jorge Pinho de Sousa,et al.  Using metaheuristics in multiobjective resource constrained project scheduling , 2000, Eur. J. Oper. Res..

[6]  A. Jaszkiewicz Multiple Objective Genetic Local Search Algorithm , 2001 .

[7]  Jun Wang,et al.  A sensor-based accelerated approach for multi-attribute machinability and tool life evaluation , 1990 .

[8]  Vincent Barichard,et al.  Approches hybrides pour les problèmes multiobjectifs , 2003 .

[9]  Michael Pilegaard Hansen,et al.  Metaheuristics for multiple objective combinatorial optimization , 1998 .

[10]  Minghe Sun Applying Tabu search to multiple objective combinatorial optimization problems , 1997 .

[11]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[12]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[13]  Pierre Hansen,et al.  Bicriterion Path Problems , 1980 .

[14]  Xavier Gandibleux,et al.  Bounds and bound sets for biobjective combinatorial optimization problems , 2001 .

[15]  Andrzej Jaszkiewicz,et al.  Pareto Simulated Annealing , 1997 .

[16]  Philippe Lacomme,et al.  Multiobjective Capacitated Arc Routing Problem , 2003, EMO.

[17]  V. K. Jayaraman,et al.  Multiobjective ant algorithm for continuous function optimizatio: combination of strength Pareto fitness assignment and thermodynamic clustering , 2000 .

[18]  Jin-Kao Hao,et al.  A Population and Interval Constraint Propagation Algorithm , 2003, EMO.

[19]  Serpil Sayin,et al.  Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming , 2000, Math. Program..

[20]  Justo Puerto,et al.  Multiobjective solution of the uncapacitated plant location problem , 2003, Eur. J. Oper. Res..

[21]  Paolo Serafini,et al.  Simulated Annealing for Multi Objective Optimization Problems , 1994 .

[22]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[23]  Nicolas Jozefowiez,et al.  Modélisation et résolution approchée de problèmes de tournées multi-objectif , 2004 .

[24]  W. Carlyle,et al.  A new technique to compare algorithms for bi-criteria combinatorial optimization problems , 2001 .

[25]  Philippe Lacomme,et al.  Multi-Objective Capacitated Arc Routing Problem , 2002 .

[26]  Matthias Ehrgott,et al.  Computation of ideal and Nadir values and implications for their use in MCDM methods , 2003, Eur. J. Oper. Res..

[27]  Arnaud Fréville,et al.  Tabu Search Based Procedure for Solving the 0-1 MultiObjective Knapsack Problem: The Two Objectives Case , 2000, J. Heuristics.

[28]  Simon French,et al.  Multiple Criteria Decision Making: Theory and Application , 1981 .

[29]  Francisco Ruiz,et al.  Advances in Multiple Objective and Goal Programming , 1997 .

[30]  Xavier Gandibleux,et al.  A Tabu Search Procedure to Solve MultiObjective Combinatorial Optimization Problems , 1997 .

[31]  Andrzej Jaszkiewicz,et al.  Multiple objective metaheuristic algorithms for combinatorial optimization , 2001 .

[32]  Richard F. Hartl,et al.  Pareto Ant Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection , 2004, Ann. Oper. Res..

[33]  Stanley Zionts,et al.  Multiple Criteria Decision Making in the New Millennium , 2001 .

[34]  F. Abdelaziz,et al.  A Hybrid Heuristic for Multiobjective Knapsack Problems , 1999 .

[35]  DebKalyanmoy Multi-objective genetic algorithms , 1999 .

[36]  Daniel Merkle,et al.  Bi-Criterion Optimization with Multi Colony Ant Algorithms , 2001, EMO.

[37]  Jin-Kao Hao,et al.  Un algorithme hybride pour le problème de sac à dos multi-objectifs , 2002 .

[38]  Rafael Caballero,et al.  SSPMO: A Scatter Tabu Search Procedure for Non-Linear Multiobjective Optimization , 2007, INFORMS J. Comput..

[39]  Marc Gravel,et al.  Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic , 2002, Eur. J. Oper. Res..