2.06 – Vibrating Gyroscopes

Silicon micromachined gyroscopes have gained immense popularity in the automotive and consumer electronics industry owing to their miniature size, low power consumption, and compatibility with regular Complementary Metal Oxide Semiconductor (CMOS) Integrated Circuit fabrication technology. Vibrating micromachined gyroscopes rely on the Coriolis-induced transfer of energy between two vibration modes of a microstructure. A comprehensive analysis of performance parameters, system blocks, and operation is presented in this chapter, which is illustrated succinctly with a mode-matched silicon tuning fork gyroscope as a case study.

[1]  Barrie Gilbert,et al.  A precise four-quadrant multiplier with subnanosecond response , 1968, IEEE Solid-State Circuits Newsletter.

[2]  Guohong He,et al.  A single-crystal silicon vibrating ring gyroscope , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).

[3]  Boris Oks,et al.  Evolutionary computation applied to the tuning of MEMS gyroscopes , 2005, GECCO '05.

[4]  H. Seidel,et al.  Silicon angular rate sensor for automotive applications with piezoelectric drive and piezoresistive read-out , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[5]  Bernhard E. Boser Electronics for micromachined inertial sensors , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[6]  K. Najafi,et al.  A bulk silicon dissolved wafer process for microelectromechanical devices , 1992 .

[7]  Farrokh Ayazi,et al.  TOWARDS INERTIAL GRADE VIBRATORY MICROGYROS: A HIGH-Q IN-PLANE SILICON-ON-INSULATOR TUNING FORK DEVICE , 2004 .

[8]  J. Burdess,et al.  The Theory of a Piezoelectric Disc Gyroscope , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Anthony Lawrence,et al.  Modern Inertial Technology: Navigation, Guidance, and Control , 1993 .

[10]  G. Fedder,et al.  Fabrication, characterization, and analysis of a DRIE CMOS-MEMS gyroscope , 2003 .

[11]  Christopher C. T. Nguyen,et al.  Influence of automatic level control on micromechanical resonator oscillator phase noise , 2003, IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003. Proceedings of the 2003.

[12]  F. Ayazi,et al.  VHF single crystal silicon capacitive elliptic bulk-mode disk resonators-part II: implementation and characterization , 2004, Journal of Microelectromechanical Systems.

[13]  R. Neul,et al.  New surface micromachined angular rate sensor for vehicle stabilizing systems in automotive applications , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[14]  T. King,et al.  Silicon monolithic micromechanical gyroscope , 1991, TRANSDUCERS '91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers.

[15]  F. Ayazi,et al.  An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations , 2003 .

[16]  S. Sherman,et al.  Single-chip surface micromachined integrated gyroscope with 50°/h Allan deviation , 2002, IEEE J. Solid State Circuits.

[17]  Y. Oh,et al.  A surface-micromachined tunable vibratory gyroscope , 1997, Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots.

[18]  J. Bernstein,et al.  A micromachined comb-drive tuning fork rate gyroscope , 1993, [1993] Proceedings IEEE Micro Electro Mechanical Systems.

[19]  J. Marek,et al.  A precision yaw rate sensor in silicon micromachining , 1997 .

[20]  B. Boser,et al.  A monolithic surface micromachined Z-axis gyroscope with digital output , 2000, 2000 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.00CH37103).

[21]  Andrei M. Shkel,et al.  Structurally decoupled micromachined gyroscopes with post-release capacitance enhancement , 2005 .

[22]  Farrokh Ayazi,et al.  Micromachined inertial sensors , 1998, Proc. IEEE.

[23]  Kari Halonen,et al.  Fully integrated charge sensitive amplifier for readout of micromechanical capacitive sensors , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[24]  K. Najafi,et al.  A HARPSS polysilicon vibrating ring gyroscope , 2001 .

[25]  F. Ayazi,et al.  High Performance Matched-Mode Tuning Fork Gyroscope , 2006, 19th IEEE International Conference on Micro Electro Mechanical Systems.

[26]  F. Ayazi,et al.  High aspect-ratio combined poly and single-crystal silicon (HARPSS) MEMS technology , 2000, Journal of Microelectromechanical Systems.

[27]  N. Yazdi,et al.  Shock Protection Using Integrated Nonlinear Spring Shock Stops , 2006, 19th IEEE International Conference on Micro Electro Mechanical Systems.

[28]  Jan Söderkvist Design of a solid-state gyroscopic sensor made of quartz , 1990 .

[29]  K. Najafi,et al.  A bulk silicon dissolved wafer process for microelectromechanical systems , 1991, International Electron Devices Meeting 1991 [Technical Digest].

[30]  Y. Mochida,et al.  A micromachined vibrating gyroscope , 1995 .

[31]  J.G. Lee,et al.  Design And Fabrication of Anautomatic Mode Controlled Vibratory Gyroscope , 2006, 19th IEEE International Conference on Micro Electro Mechanical Systems.

[32]  K. Park,et al.  Laterally oscillated and force-balanced micro vibratory rate gyroscope supported by fish hook shape springs , 1997, Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots.