Oxygen activity regulation over LaNiO3 perovskites by Ti substitution for chemical looping partial oxidation of methane

[1]  Bolun Yang,et al.  Theoretical insights into the oxygen supply performance of α-Fe2O3 in the chemical-looping reforming of methane , 2022, Chemical Engineering Science.

[2]  Guoxiong Wang,et al.  Heterogeneous Catalysis for CO2 Conversion into Chemicals and Fuels , 2022, Transactions of Tianjin University.

[3]  Xiaodong Wang,et al.  Influence of the encapsulation degree of Fe0 active sites on performance of garnets for chemical looping partial oxidation of CH4 , 2022, Applied Catalysis B: Environmental.

[4]  Laihong Shen,et al.  Double adjustment of Co and Sr in LaMnO3+δ perovskite oxygen carriers for chemical looping steam methane reforming , 2021, Applied Catalysis B: Environmental.

[5]  K. Hidajat,et al.  Role of lattice oxygen in methane activation on Ni-phyllosilicate@Ce1-xZrxO2 core-shell catalyst for methane dry reforming: Zr doping effect, mechanism, and kinetic study , 2021 .

[6]  Fuxiang Zhang,et al.  Visible Light-Responsive N-Doped TiO2 Photocatalysis: Synthesis, Characterizations, and Applications , 2021, Transactions of Tianjin University.

[7]  Dawei Tang,et al.  Iron–oxygen covalency in perovskites to dominate syngas yield in chemical looping partial oxidation , 2021 .

[8]  Xiaodong Wang,et al.  Thermodynamic analysis of chemical looping coupling process for coproducing syngas and hydrogen with in situ CO2 utilization , 2021 .

[9]  Yaoqiang Chen,et al.  Enhancement effect of oxygen mobility over Ce0.5Zr0.5O2 catalysts doped by multivalent metal oxides for soot combustion , 2021 .

[10]  Yuhao Wang,et al.  Chemical-looping reforming of methane over La-Mn-Fe-O oxygen carriers: Effect of calcination temperature , 2021 .

[11]  C. Müller,et al.  CO2-free conversion of CH4 to syngas using chemical looping , 2020 .

[12]  Xiaodong Wang,et al.  Promoted methane conversion to syngas over Fe-based garnets via chemical looping , 2020 .

[13]  Jinlong Gong,et al.  FeO6 Octahedral Distortion Activates Lattice Oxygen in Perovskite Ferrite for Methane Partial Oxidation Coupled with CO2-Splitting. , 2020, Journal of the American Chemical Society.

[14]  Hua Li,et al.  Perovskite LaNiO3/TiO2 step-scheme heterojunction with enhanced photocatalytic activity , 2020 .

[15]  T. Grande,et al.  Effects of Oxygen Mobility in La–Fe-Based Perovskites on the Catalytic Activity and Selectivity of Methane Oxidation , 2020 .

[16]  L. Fan,et al.  Design and Operations of a 15 kWth Subpilot Unit for the Methane-to-Syngas Chemical Looping Process with CO2 Utilization , 2020 .

[17]  I. Metcalfe,et al.  Endogenous Nanoparticles Strain Perovskite Host Lattice Providing Oxygen Capacity and Driving Oxygen Exchange and CH4 Conversion to Syngas. , 2019, Angewandte Chemie.

[18]  Jinlong Gong,et al.  Insights into interface engineering in steam reforming reactions for hydrogen production , 2019 .

[19]  J. Janek,et al.  Exsolved Nickel Nanoparticles Acting as Oxygen Storage Reservoirs and Active Sites for Redox CH4 Conversion , 2019, ACS Applied Energy Materials.

[20]  Xiaodong Wang,et al.  Improving Syngas Selectivity of Fe2O3/Al2O3 with Yttrium Modification in Chemical Looping Methane Conversion , 2019, ACS Catalysis.

[21]  J. Bueno,et al.  Effect of Au doping of Ni/Al2O3 catalysts used in steam reforming of methane: Mechanism, apparent activation energy, and compensation effect , 2019, Chemical Engineering Science.

[22]  H. Dai,et al.  Effect of rare earth element (Ln = La, Pr, Sm, and Y) on physicochemical properties of the Ni/Ln2Ti2O7 catalysts for the steam reforming of methane , 2019, Molecular Catalysis.

[23]  M. Iwasaki,et al.  Effect of Al Substitution on Structural Stability and Topotactic Oxygen Release Rate of LaNi1–xAlxO3 with Perovskite Structure , 2019, ACS Applied Energy Materials.

[24]  Xiaodong Wang,et al.  Effect of Regeneration Period on the Selectivity of Synthesis Gas of Ba-Hexaaluminates in Chemical Looping Partial Oxidation of Methane , 2018, ACS Catalysis.

[25]  Jonathan A. Fan,et al.  Metal oxide redox chemistry for chemical looping processes , 2018, Nature Reviews Chemistry.

[26]  Aiqin Wang,et al.  In situ encapsulation of iron(0) for solar thermochemical syngas production over iron-based perovskite material , 2018, Communications Chemistry.

[27]  S. Joo,et al.  Oxygen-deficient triple perovskites as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions , 2018, Science Advances.

[28]  R. Rabelo-Neto,et al.  CO2 reforming of methane over supported LaNiO3 perovskite-type oxides , 2018 .

[29]  Mingrui Wei,et al.  Perovskite LaNiO3-δ oxide as an anion-intercalated pseudocapacitor electrode , 2018 .

[30]  Hua Wang,et al.  Chemical looping combustion of methane in a large laboratory unit: Model study on the reactivity and effective utilization of typical oxygen carriers , 2017 .

[31]  Liang Zeng,et al.  Enhanced Lattice Oxygen Reactivity over Ni-Modified WO3-Based Redox Catalysts for Chemical Looping Partial Oxidation of Methane , 2017 .

[32]  Liang Zeng,et al.  Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles , 2017 .

[33]  B. A. Rosen,et al.  Influence of LaNiO3 Shape on Its Solid-Phase Crystallization into Coke-Free Reforming Catalysts , 2016 .

[34]  Fanxing Li,et al.  Methane partial oxidation using FeO(x)@La(0.8)Sr(0.2)FeO(3-δ) core-shell catalyst--transient pulse studies. , 2015, Physical chemistry chemical physics : PCCP.

[35]  Liang-Shih Fan,et al.  Iron oxide looping for natural gas conversion in a countercurrent moving bed reactor , 2015 .

[36]  Maohong Fan,et al.  Progress in oxygen carrier development of methane-based chemical-looping reforming: A review , 2015 .

[37]  James Spivey,et al.  A review of dry (CO2) reforming of methane over noble metal catalysts. , 2014, Chemical Society reviews.

[38]  X. D. Xu,et al.  Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis , 2014 .

[39]  M. Chang,et al.  Modifying perovskite-type oxide catalyst LaNiO3 with Ce for carbon dioxide reforming of methane , 2014 .

[40]  De Chen,et al.  Chemical looping methane partial oxidation: The effect of the crystal size and O content of LaFeO3 , 2012 .

[41]  L. Qiao,et al.  Direct observation of Ni3+ and Ni2+ in correlated LaNiO3−δ films , 2011 .

[42]  Hua Wang,et al.  Ce-Fe-O mixed oxide as oxygen carrier for the direct partial oxidation of methane to syngas , 2010 .

[43]  Liang-Shih Fan,et al.  Chemical Looping Technology and Its Fossil Energy Conversion Applications , 2010 .

[44]  Zili Wu,et al.  Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[45]  Hao Yu,et al.  Autothermal reforming of ethanol for hydrogen production over perovskite LaNiO3 , 2010 .

[46]  Xiao-hui Liu,et al.  Nanocasted Synthesis of Mesoporous LaCoO3 Perovskite with Extremely High Surface Area and Excellent Activity in Methane Combustion , 2008 .

[47]  Z. Hao,et al.  Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using AFeO3 (A = La, Nd, Eu) perovskite-type oxides as oxygen storage. , 2006, The journal of physical chemistry. B.

[48]  J. Assaf,et al.  Ni–Fe Catalysts Based on Perovskite-type Oxides for Dry Reforming of Methane to Syngas , 2006 .

[49]  R. Grasselli,et al.  Fundamental Principles of Selective Heterogeneous Oxidation Catalysis , 2002 .

[50]  Lanny D. Schmidt,et al.  Catalytic partial oxidation of natural gas to syngas , 1995 .

[51]  G. Hutchings,et al.  Control of product selectivity in the partial oxidation of methane , 1990, Nature.