Multiple Thermal Updraft Estimation and Observability Analysis

This work presents a new approach to integrated localization and characterization of multiple thermal updrafts. A particle-filter-based method is proposed, which allows estimating position, strengt...

[1]  Anouck Girard,et al.  Atmospheric flow field models applicable for aircraft endurance extension , 2013 .

[2]  Aaron D. Kahn Atmospheric thermal location estimation , 2017 .

[3]  Kevin D. Jones,et al.  Alternate Strategies for Optimal Unmanned Aerial Vehicle Thermaling , 2018, Journal of Aircraft.

[4]  Jack W. Langelaan,et al.  Coordinated Mapping and Exploration for Autonomous Soaring , 2011 .

[5]  Walter Fichter,et al.  Reinforced Learning to Cross-Country Soar in the Vertical Plane of Motion , 2019 .

[6]  Carlos H. Muravchik,et al.  Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..

[7]  Tristan C. Flanzer,et al.  Dynamic Environment Mapping for Autonomous Thermal Soaring , 2010 .

[8]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[9]  Nicholas R. J. Lawrance,et al.  Learning to soar: Resource-constrained exploration in reinforcement learning , 2015, Int. J. Robotics Res..

[10]  J. Neidhoefer,et al.  Wind Field Estimation for Small Unmanned Aerial Vehicles , 2010 .

[11]  John Valasek,et al.  Autonomous Soaring Using Reinforcement Learning for Trajectory Generation , 2014 .

[12]  Michael J. Allen Guidance and Control of an Autonomous Soaring Vehicle with Flight Test Results , 2007 .

[13]  M. Zakai,et al.  Some Classes of Global Cramer-Rao Bounds , 1987 .

[14]  D. Lenschow,et al.  The role of thermals in the convective boundary layer , 1980 .

[15]  Jacob Willem Langelaan,et al.  Guided Exploration for Coordinated Autonomous Soaring Flight , 2014 .

[16]  Isaac Kaminer,et al.  Thermal Centering Control for Autonomous Soaring; Stability Analysis and Flight Test Results , 2012 .

[17]  Jack W. Langelaan,et al.  The AutoSOAR autonomous soaring aircraft part 2: Hardware implementation and flight results , 2018, J. Field Robotics.

[18]  Michael J. Allen,et al.  Autonomous Soaring for Improved Endurance of a Small Uninhabited Air Vehicle , 2005 .

[19]  C. Jauffret Observability and fisher information matrix in nonlinear regression , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[20]  Roland Siegwart,et al.  Robotic technologies for solar‐powered UAVs: Fully autonomous updraft‐aware aerial sensing for multiday search‐and‐rescue missions , 2018, J. Field Robotics.

[21]  Michael J. Allen Updraft Model for Development of Autonomous Soaring Uninhabited Air Vehicles , 2006 .

[22]  A. Gardner Methods of Statistics , 1941 .

[23]  W. Fichter,et al.  Pipelined Particle Filter with Nonobservability Measure for Attitude and Velocity Estimation , 2015 .

[24]  W. Fichter,et al.  Estimating Total Energy Compensated Climb Rates from Position Trajectories , 2019, AIAA Scitech 2019 Forum.

[25]  Daniel J. Edwards,et al.  Autonomous Soaring: The Montague Cross-Country Challenge , 2010 .

[26]  Gautam Reddy,et al.  Learning to soar in turbulent environments , 2016, Proceedings of the National Academy of Sciences.

[27]  Jack W. Langelaan,et al.  The AutoSOAR autonomous soaring aircraft, part 1: Autonomy algorithms , 2018, J. Field Robotics.

[28]  John J. Bird,et al.  Spline Mapping to Maximize Energy Exploitation of Non-Uniform Thermals , 2013 .

[29]  Daniel J. Edwards Implementation Details and Flight Test Results of an Autonomous Soaring Controller , 2008 .

[30]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .