Quantification and visualization of variation in anatomical trees

This paper presents two approaches to quantifying and visualizing variation in datasets of trees. The first approach localizes subtrees in which significant population differences are found through hypothesis testing and sparse classifiers on subtree features. The second approach visualizes the global metric structure of datasets through low-distortion embedding into hyperbolic planes in the style of multidimensional scaling. A case study is made on a dataset of airway trees in relation to Chronic Obstructive Pulmonary Disease.

[1]  Ezra Miller,et al.  Averaging metric phylogenetic trees , 2012, ArXiv.

[2]  Jörg A. Walter H-MDS: a new approach for interactive visualization with multidimensional scaling in the hyperbolic space , 2004, Inf. Syst..

[3]  Yoshinobu Kawahara,et al.  Efficient network-guided multi-locus association mapping with graph cuts , 2012, Bioinform..

[4]  Helge J. Ritter,et al.  On interactive visualization of high-dimensional data using the hyperbolic plane , 2002, KDD.

[5]  Karl-Theodor Sturm,et al.  Probability Measures on Metric Spaces of Nonpositive Curvature , 2003 .

[6]  Bertrand Thirion,et al.  Multiscale Mining of fMRI Data with Hierarchical Structured Sparsity , 2012, SIAM J. Imaging Sci..

[7]  Marleen de Bruijne,et al.  Tree-Space Statistics and Approximations for Large-Scale Analysis of Anatomical Trees , 2013, IPMI.

[8]  Ricardo Fraiman,et al.  Testing statistical hypothesis on random trees , 2006 .

[9]  Mark J. Clement,et al.  On the use of cartographic projections in visualizing phylo-genetic tree space , 2010, Algorithms for Molecular Biology.

[10]  D. Robinson,et al.  Comparison of phylogenetic trees , 1981 .

[11]  Louis J. Billera,et al.  Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..

[12]  Piotr Indyk,et al.  Approximation algorithms for embedding general metrics into trees , 2007, SODA '07.

[13]  Martin Styner,et al.  Multi-Object Analysis of Volume, Pose, and Shape Using Statistical Discrimination , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[15]  Alejandro F. Frangi,et al.  Patient-Specific Computational Hemodynamics of Intracranial Aneurysms from 3D Rotational Angiography and CT Angiography: An In Vivo Reproducibility Study , 2011, American Journal of Neuroradiology.

[16]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[17]  Miroslav Bacák,et al.  Computing Medians and Means in Hadamard Spaces , 2012, SIAM J. Optim..

[18]  Robert T. Schultz,et al.  Connectivity Subnetwork Learning for Pathology and Developmental Variations , 2013, MICCAI.

[19]  Eric A. Hoffman,et al.  Extraction of Airways From CT (EXACT'09) , 2012, IEEE Transactions on Medical Imaging.

[20]  D. Hillis,et al.  Analysis and visualization of tree space. , 2005, Systematic biology.

[21]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[22]  Ellen Gasparovic,et al.  The Blum Medial Linking Structure for Multi-Region Analysis , 2012 .

[23]  Martin Styner,et al.  Shape Modeling and Analysis with Entropy-Based Particle Systems , 2007, IPMI.

[24]  Ingrid Montealegre Visualizing Restricted Landscapes of Phylogenetic Trees , 2003 .

[25]  Susan Holmes,et al.  Computational Tools for Evaluating Phylogenetic and Hierarchical Clustering Trees , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[26]  Marleen de Bruijne,et al.  Airway Tree Extraction with Locally Optimal Paths , 2009, MICCAI.

[27]  B. Czéh,et al.  Hemispheric differences in basilar dendrites and spines of pyramidal neurons in the rat prelimbic cortex: activity- and stress-induced changes , 2009, The European journal of neuroscience.

[28]  Thorsten Dickhaus,et al.  Testing a Statistical Hypothesis , 2015 .

[29]  Marleen de Bruijne,et al.  A Hierarchical Scheme for Geodesic Anatomical Labeling of Airway Trees , 2012, MICCAI.

[30]  A. Dirksen,et al.  The Danish Randomized Lung Cancer CT Screening Trial—Overall Design and Results of the Prevalence Round , 2009, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[31]  S. John The Evaluation of Dimensionality Reduction Methods to Characterize Phylogenetic Tree-Space , 2008 .

[32]  Vasileios Megalooikonomou,et al.  A Representation and Classification Scheme for Tree-Like Structures in Medical Images: Analyzing the Branching Pattern of Ductal Trees in X-ray Galactograms , 2009, IEEE Transactions on Medical Imaging.

[33]  Ricardo Fraiman,et al.  Testing statistical hypothesis on random trees and applications to the protein classification problem , 2006, math/0603378.

[34]  Marleen de Bruijne,et al.  Scalable kernels for graphs with continuous attributes , 2013, NIPS.

[35]  Mikkel Thorup,et al.  On the approximability of numerical taxonomy (fitting distances by tree metrics) , 1996, SODA '96.

[36]  P. Groenen,et al.  Modern multidimensional scaling , 1996 .

[37]  Nina Amenta,et al.  Case study: visualizing sets of evolutionary trees , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[38]  Mark Crovella,et al.  Multidimensional Scaling in the Poincaré Disk , 2011, ArXiv.

[39]  Tom M. W. Nye,et al.  Principal components analysis in the space of phylogenetic trees , 2011, 1202.5132.

[40]  Miroslav Bacak A novel algorithm for computing the Frechet mean in Hadamard spaces , 2012 .

[41]  Marleen de Bruijne,et al.  Optimal surface segmentation using flow lines to quantify airway abnormalities in chronic obstructive pulmonary disease , 2014, Medical Image Anal..

[42]  J. Scott Provan,et al.  A Fast Algorithm for Computing Geodesic Distances in Tree Space , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[43]  Junzhou Huang,et al.  Learning with structured sparsity , 2009, ICML '09.

[44]  Ezra Miller,et al.  Polyhedral computational geometry for averaging metric phylogenetic trees , 2012, Adv. Appl. Math..

[45]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .