Computational Streetscapes

Streetscapes have presented a long-standing interest in many fields. Recently, there has been a resurgence of attention on streetscape issues, catalyzed in large part by computing. Because of computing, there is more understanding, vistas, data, and analysis of and on streetscape phenomena than ever before. This diversity of lenses trained on streetscapes permits us to address long-standing questions, such as how people use information while mobile, how interactions with people and things occur on streets, how we might safeguard crowds, how we can design services to assist pedestrians, and how we could better support special populations as they traverse cities. Amid each of these avenues of inquiry, computing is facilitating new ways of posing these questions, particularly by expanding the scope of what-if exploration that is possible. With assistance from computing, consideration of streetscapes now reaches across scales, from the neurological interactions that form among place cells in the brain up to informatics that afford real-time views of activity over whole urban spaces. For some streetscape phenomena, computing allows us to build realistic but synthetic facsimiles in computation, which can function as artificial laboratories for testing ideas. In this paper, I review the domain science for studying streetscapes from vantages in physics, urban studies, animation and the visual arts, psychology, biology, and behavioral geography. I also review the computational developments shaping streetscape science, with particular emphasis on modeling and simulation as informed by data acquisition and generation, data models, path-planning heuristics, artificial intelligence for navigation and way-finding, timing, synthetic vision, steering routines, kinematics, and geometrical treatment of collision detection and avoidance. I also discuss the implications that the advances in computing streetscapes might have on emerging developments in cyber-physical systems and new developments in urban computing and mobile computing.

[1]  K. Stanilov,et al.  Site Design and Pedestrian Travel , 1999 .

[2]  Alex J. Champandard AI Game Development: Synthetic Creatures with Learning and Reactive Behaviors , 2003 .

[3]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[4]  John E. Laird,et al.  Human-Level AI's Killer Application: Interactive Computer Games , 2000, AI Mag..

[5]  Matthew Zook,et al.  Augmented Reality in Urban Places: Contested Content and the Duplicity of Code , 2013 .

[6]  Mitchel Resnick,et al.  Turtles, termites, and traffic jams - explorations in massively parallel microworlds , 1994 .

[7]  J. Foltête,et al.  Urban layout, landscape features and pedestrian usage , 2007 .

[8]  Hyun Joon Shin,et al.  Snap-together motion: assembling run-time animations , 2003, I3D '03.

[9]  Amitava Mukherjee,et al.  Pervasive Computing: A Paradigm for the 21st Century , 2003, Computer.

[10]  M. Kwan Gis methods in time‐geographic research: geocomputation and geovisualization of human activity patterns , 2004 .

[11]  Bruno Poucet,et al.  Relationships between Place Cell Firing Fields and Navigational Decisions by Rats , 2002, The Journal of Neuroscience.

[12]  Moshe Sipper,et al.  Evolution of Parallel Cellular Machines: The Cellular Programming Approach , 1997 .

[13]  Jacqueline Fagard,et al.  A counterclockwise bias in running , 2008, Neuroscience Letters.

[14]  P. Torrens Moving Agent Pedestrians Through Space and Time , 2012 .

[15]  Robert Weibel,et al.  Towards a taxonomy of movement patterns , 2008, Inf. Vis..

[16]  Hui Lin,et al.  Virtual Geographic Environments (VGEs): A New Generation of Geographic Analysis Tool , 2013 .

[17]  M. Benedikt,et al.  To Take Hold of Space: Isovists and Isovist Fields , 1979 .

[18]  Paul M. Torrens,et al.  High-fidelity behaviours for model people on model streetscapes , 2014, Ann. GIS.

[19]  I. Couzin,et al.  Self-Organization and Collective Behavior in Vertebrates , 2003 .

[20]  Jehee Lee,et al.  Motion patches: building blocks for virtual environments annotated with motion data , 2006, ACM Trans. Graph..

[21]  Michael Batty,et al.  Agent-based pedestrian modelling , 2003 .

[22]  Paul M. Torrens,et al.  An extensible simulation environment and movement metrics for testing walking behavior in agent-based models , 2012, Comput. Environ. Urban Syst..

[23]  Daniel McFadden,et al.  The behavioral science of transportation , 2007 .

[24]  L. Tottenham,et al.  The relationship between collisions and pseudoneglect: Is it right? , 2012, Cortex.

[25]  T. Gärling,et al.  The effects of pathway configuration, landmarks and stress on environmental cognition , 1984 .

[26]  Norman I. Badler,et al.  Posture interpolation with collision avoidance , 1994, Proceedings of Computer Animation '94.

[27]  M. Southworth Designing the Walkable City , 2005 .

[28]  Michael R. Hill,et al.  Selected References on Walking, Crossing Streets, and Choosing Pedestrian Routes , 1984 .

[29]  H. Lund Testing the Claims of New Urbanism: Local Access, Pedestrian Travel, and Neighboring Behaviors , 2003 .

[30]  A. Bauman,et al.  Understanding environmental influences on walking; Review and research agenda. , 2004, American journal of preventive medicine.

[31]  Daniel Thalmann,et al.  Hierarchical Model for Real Time Simulation of Virtual Human Crowds , 2001, IEEE Trans. Vis. Comput. Graph..

[32]  Bradford J McFadyen,et al.  Characteristics of personal space during obstacle circumvention in physical and virtual environments. , 2008, Gait & posture.

[33]  E. Bonabeau,et al.  Swarm smarts. , 2000, Scientific American.

[34]  Dirk Helbing,et al.  Crowd behaves as excitable media during Mexican wave , 2002 .

[35]  Joan N. Vickers,et al.  How far ahead do we look when required to step on specific locations in the travel path during locomotion? , 2002, Experimental Brain Research.

[36]  Julien Pettré,et al.  Collision avoidance between two walkers: role-dependent strategies. , 2013, Gait & posture.

[37]  R. Hetherington The Perception of the Visual World , 1952 .

[38]  Narushige Shiode,et al.  Inverse distance-weighted interpolation on a street network , 2009 .

[39]  Daniel Thalmann,et al.  Gaze Behaviors for Virtual Crowd Characters , 2009, COST 2102 Conference.

[40]  Martin Raubal,et al.  A Formal Model of the Process of Wayfinding in Built Environments , 1999, COSIT.

[41]  Jeffrey Jacobson,et al.  Unreal tournament for immersive interactive theater , 2002, CACM.

[42]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[43]  Y. Tuan IMAGES AND MENTAL MAPS , 1975 .

[44]  P. Torrens,et al.  Cellular Automata and Urban Simulation: Where Do We Go from Here? , 2001 .

[45]  Anthony Stefanidis,et al.  Walk This Way: Improving Pedestrian Agent-Based Models through Scene Activity Analysis , 2015, ISPRS Int. J. Geo Inf..

[46]  Debra Benita Shaw,et al.  Streets for Cyborgs , 2015 .

[47]  Craig W. Reynolds Computer animation with scripts and actors , 1982, SIGGRAPH.

[48]  J. Gibson The perception of the visual world , 1951 .

[49]  P. Kanyuk Brain Springs: Fast Physics for Large Crowds in WALL•E , 2009, IEEE Computer Graphics and Applications.

[50]  Dinesh Manocha,et al.  Real-time navigation of independent agents using adaptive roadmaps , 2007, VRST '07.

[51]  D. Tank,et al.  Intracellular dynamics of hippocampal place cells during virtual navigation , 2009, Nature.

[52]  Ufuk Dogu,et al.  Spatial Factors Affecting Wayfinding and Orientation , 2000 .

[53]  David H. Eberly,et al.  3D Game Engine Design , 2001 .

[54]  D. Thalmann,et al.  A navigation graph for real-time crowd animation on multilayered and uneven terrain , 2005 .

[55]  John Krumm,et al.  Location-aware computing comes of age , 2004, Computer.

[56]  Tommy Gärling,et al.  Distance Minimization in Downtown Pedestrian Shopping , 1988 .

[57]  Heinrich H. Bülthoff,et al.  When in doubt follow your nose—a wayfinding strategy , 2014, Front. Psychol..

[58]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[59]  F. Thomas,et al.  Disney Animation: The Illusion of Life , 1981 .

[60]  Georg Gartner,et al.  A critical evaluation of location based services and their potential , 2007, J. Locat. Based Serv..

[61]  Serge P. Hoogendoorn,et al.  Pedestrian route-choice and activity scheduling theory and models , 2004 .

[62]  J. Pettré,et al.  Minimal predicted distance: a common metric for collision avoidance during pairwise interactions between walkers. , 2012, Gait & posture.

[63]  Shiyong Cui,et al.  Detection of High-Density Crowds in Aerial Images Using Texture Classification , 2016, Remote. Sens..

[64]  Yusuf Ziya Özcan,et al.  Wayfinding in an Unfamiliar Environment , 2004 .

[65]  Pietro Terna Simulation tools for social scientists: Building agent-based models with SWARM , 1998, J. Artif. Soc. Soc. Simul..

[66]  Daniel C. Smith,et al.  The effects of situational factors on in-store grocery shopping behavior: The role of store environment and time available for shopping. , 1989 .

[67]  Gunnar G. Løvås,et al.  Modeling and Simulation of Pedestrian Traffic Flow , 1994 .

[68]  Yaser Mowafi,et al.  Tracking human mobility at mass gathering events using WISP , 2013, Second International Conference on Future Generation Communication Technologies (FGCT 2013).

[69]  Armin Seyfried,et al.  Influence of Geometry Parameters on Pedestrian Flow through Bottleneck , 2011 .

[70]  Soong Moon Kang,et al.  Structure of Urban Movements: Polycentric Activity and Entangled Hierarchical Flows , 2010, PloS one.

[71]  Francisco J. Serón,et al.  New approaches to culling and LOD methods for scenes with multiple virtual actors , 2010, Comput. Graph..

[72]  John Zacharias,et al.  Pedestrian Behavior Pedestrian Behavior and Perception in Urban Walking Environments , 2001 .

[73]  George Nagy,et al.  Modelling and Visualization of Spatial Data in GIS , 2002 .

[74]  V. Sisiopiku,et al.  PEDESTRIAN BEHAVIORS AT AND PERCEPTIONS TOWARDS VARIOUS PEDESTRIAN FACILITIES: AN EXAMINATION BASED ON OBSERVATION AND SURVEY DATA , 2003 .

[75]  Demetri Terzopoulos,et al.  Multilevel computational processes for visual surface reconstruction , 1983, Comput. Vis. Graph. Image Process..

[76]  C D Heth,et al.  Place recognition and way finding by children and adults , 1994, Memory & cognition.

[77]  W. Grajetski,et al.  Digital Egypt: reconstructions from Egypt on the World Wide Web , 2003 .

[78]  Paul M. Torrens,et al.  Visualizing the City: Communicating Urban Design to Planners and Decision-Makers , 2001 .

[79]  A. Stefanidis,et al.  Crowdsourcing a Collective Sense of Place , 2016, PloS one.

[80]  Yung-Ching Liu,et al.  Risk Analysis of Pedestrians’ Road-Crossing Decisions: Effects of Age, Time Gap, Time of Day, and Vehicle Speed , 2014 .

[81]  Peter Collett,et al.  Patterns of Public Behaviour: Collision Avoidance on a Pedestrian Crossing , 1974 .

[82]  Michael F. Goodchild,et al.  Accessibility in space and time: A theme in spatially integrated social science , 2003, J. Geogr. Syst..

[83]  A. King,et al.  Theoretical approaches to the promotion of physical activity: forging a transdisciplinary paradigm. , 2002, American journal of preventive medicine.

[84]  Daniel Cohen-Or,et al.  Fitting behaviors to pedestrian simulations , 2009, SCA '09.

[85]  Penny Baillie-de Byl Programming believable characters for computer games , 2004 .

[86]  Cláudio T. Silva,et al.  Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips , 2013, IEEE Transactions on Visualization and Computer Graphics.

[87]  Michael Batty,et al.  The discrete dynamics of small-scale spatial events: agent-based models of mobility in carnivals and street parades , 2003, Int. J. Geogr. Inf. Sci..

[88]  Narendra Ahuja,et al.  Gross motion planning—a survey , 1992, CSUR.

[89]  E. Maguire,et al.  The dynamic nature of cognition during wayfinding , 2008, Journal of environmental psychology.

[90]  James M. Dabbs,et al.  Beauty is Power: The Use of Space on the Sidewalk , 2016 .

[91]  Paul Kanyuk,et al.  Rivers of rodents: an animation-centric crowds pipeline for Ratatouille , 2007, SIGGRAPH '07.

[92]  Stefan Holl,et al.  Modeling the Dynamic Route Choice of Pedestrians to Assess the Criticality of Building Evacuation , 2011, Adv. Complex Syst..

[93]  L. Vallis,et al.  Age-related changes in avoidance strategies when negotiating single and multiple obstacles , 2007, Experimental Brain Research.

[94]  Michiel van de Panne,et al.  From Footprints to Animation , 1997, Comput. Graph. Forum.

[95]  P. Torrens Wi-Fi Geographies , 2008 .

[96]  M. Dijst,et al.  Short-term Dynamics in the Use of Places: A Space-Time Typology of Visitor Populations in the Netherlands , 2006 .

[97]  Leo P. Kadanoff,et al.  Simulating hydrodynamics: A pedestrian model , 1985 .

[98]  Asha Weinstein Agrawal,et al.  How Far, by Which Route and Why? A Spatial Analysis of Pedestrian Preference , 2007 .

[99]  Tony Hey,et al.  The Fourth Paradigm: Data-Intensive Scientific Discovery , 2009 .

[100]  D. Lazer,et al.  Inferring Social Network Structure using Mobile Phone Data , 2006 .

[101]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[102]  Crystal L. Hoyt,et al.  Immersive Virtual Environment Technology as a Methodological Tool for Social Psychology , 2002 .

[103]  Narushige Shiode,et al.  3D urban models: Recent developments in the digital modelling of urban environments in three-dimensions , 2000 .

[104]  Ralph H. Turner RELATIONS IN PUBLIC: MICROSTUDIES OF THE PUBLIC ORDER. By Erving Goffman. New York: Basic Books, 1971. 396 pp. $7.95 , 1973 .

[105]  Alan Penn,et al.  Encoding Natural Movement as an Agent-Based System: An Investigation into Human Pedestrian Behaviour in the Built Environment , 2002 .

[106]  Christer Ericson,et al.  Real-Time Collision Detection , 2004 .

[107]  A. Mathur,et al.  Store environment and consumer purchase behavior: Mediating role of consumer emotions , 1997 .

[108]  Paul A. Braren,et al.  Wayfinding on foot from information in retinal, not optical, flow. , 1992, Journal of experimental psychology. General.

[109]  John Kosowatz,et al.  Building a Smart City , 2017 .

[110]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1998 .

[111]  A B Schultz,et al.  Abilities to turn suddenly while walking: effects of age, gender and available response time , 1997, The journals of gerontology. Series A, Biological sciences and medical sciences.

[112]  Marcos R. Vieira,et al.  Characterizing Dense Urban Areas from Mobile Phone-Call Data: Discovery and Social Dynamics , 2010, 2010 IEEE Second International Conference on Social Computing.

[113]  John P. Braaksma,et al.  EFFECTIVE WIDTH OF PEDESTRIAN CORRIDORS , 1984 .

[114]  William T. Reeves,et al.  Inbetweening for computer animation utilizing moving point constraints , 1981, SIGGRAPH '81.

[115]  Christopher D Porter,et al.  Forecasting Bicycle and Pedestrian Travel: State of the Practice and Research Needs , 1999 .

[116]  F. Bremmer,et al.  Perception of self-motion from visual flow , 1999, Trends in Cognitive Sciences.

[117]  Glenn Reinman,et al.  SteerBench: a benchmark suite for evaluating steering behaviors , 2009, Comput. Animat. Virtual Worlds.

[118]  Zhenfeng Shao,et al.  ‘Big data’ for pedestrian volume: Exploring the use of Google Street View images for pedestrian counts , 2015 .

[119]  Mei-Po Kwan,et al.  Choice set formation with multiple flexible activities under space–time constraints , 2012, Int. J. Geogr. Inf. Sci..

[120]  Atsuyuki Okabe,et al.  The SANET Toolbox: New Methods for Network Spatial Analysis , 2006, Trans. GIS.

[121]  M. Schreckenberg,et al.  Experimental study of pedestrian flow through a bottleneck , 2006, physics/0610077.

[122]  Michael Batty Virtual Geographic Environments: a primer , 2011 .

[123]  Andres Sevtsuk,et al.  The impact of street properties on cognitive maps , 2013 .

[124]  James F. O'Brien,et al.  Real-time deformation and fracture in a game environment , 2009, SCA '09.

[125]  Daniel Thalmann,et al.  A vision-based approach to behavioural animation , 1990, Comput. Animat. Virtual Worlds.

[126]  D. Garbrecht,et al.  Pedestrian Paths Through a Uniform Environment , 1971 .

[127]  Y. Tuan,et al.  Place: An Experiential Perspective , 1975 .

[128]  Kenji Mase,et al.  Activity and Location Recognition Using Wearable Sensors , 2002, IEEE Pervasive Comput..

[129]  Aftab E. Patla,et al.  Gaze behaviors during adaptive human locomotion: insights into how vision is used to regulate locomotion , 2004 .

[130]  Guy Theraulaz,et al.  The origin of nest complexity in social insects , 1998, Complex..

[131]  Ian Gorton,et al.  The Changing Paradigm of Data-Intensive Computing , 2009, Computer.

[132]  P. Torrens,et al.  Building Agent‐Based Walking Models by Machine‐Learning on Diverse Databases of Space‐Time Trajectory Samples , 2011 .

[133]  Hyeon-Shic Shin,et al.  New York City pedestrian safety study & action plan , 2010 .

[134]  Aftab E Patla,et al.  The influence of multiple obstacles in the travel path on avoidance strategy. , 2002, Gait & posture.

[135]  Sébastien Paris,et al.  Pedestrian Reactive Navigation for Crowd Simulation: a Predictive Approach , 2007, Comput. Graph. Forum.

[136]  Eric Horvitz,et al.  Predestination: Where Do You Want to Go Today? , 2007, Computer.

[137]  Daniel R. Montello,et al.  Sex-Related Differences and Similarities in Geographic and Environmental Spatial Abilities , 1999 .

[138]  M. Blades,et al.  Relations Between Psychology and Geography , 1997 .

[139]  Wen Tang,et al.  Real-time crowd movement on large scale terrains , 2003, Proceedings of Theory and Practice of Computer Graphics, 2003..

[140]  Norman I. Badler,et al.  Articulated Figure Positioning by Multiple Constraints , 1987, IEEE Computer Graphics and Applications.

[141]  Michael F. Cohen,et al.  Interactive spacetime control for animation , 1992, SIGGRAPH.

[142]  Sébastien Paris,et al.  Environmental abstraction and path planning techniques for realistic crowd simulation , 2006, Comput. Animat. Virtual Worlds.

[143]  Norman I. Badler,et al.  ACUMEN: amplifying control and understanding of multiple entities , 2002, AAMAS '02.

[144]  Thomas Reineking,et al.  Efficient Wayfinding in Hierarchically Regionalized Spatial Environments , 2008, Spatial Cognition.

[145]  N. Badler,et al.  7-2014 ADAPT : The Agent Development and Prototyping Testbed , 2016 .

[146]  Dinesh Manocha,et al.  Real-Time Path Planning in Dynamic Virtual Environments Using Multiagent Navigation Graphs , 2008, IEEE Transactions on Visualization and Computer Graphics.

[147]  R. Hughes The flow of human crowds , 2003 .

[148]  Svetha Venkatesh,et al.  Learning and detecting activities from movement trajectories using the hierarchical hidden Markov model , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[149]  Serge P. Hoogendoorn,et al.  Pedestrian Behavior at Bottlenecks , 2005, Transp. Sci..

[150]  Luc Van Gool,et al.  Populating Ancient Pompeii with Crowds of Virtual Romans , 2007, VAST.

[151]  Chih-Cheng Chen,et al.  A combined optimization method for solving the inverse kinematics problems of mechanical manipulators , 1991, IEEE Trans. Robotics Autom..

[152]  James F. Blinn,et al.  Where am I? What am I looking at? (cinematography) , 1988, IEEE Computer Graphics and Applications.

[153]  Paul M. Torrens,et al.  High-resolution space–time processes for agents at the built–human interface of urban earthquakes , 2014, Int. J. Geogr. Inf. Sci..

[154]  Jean-Arcady Meyer,et al.  From SAB90 to SAB94: four years of animat research , 1994 .

[155]  Jon Froehlich,et al.  An Initial Study of Automatic Curb Ramp Detection with Crowdsourced Verification Using Google Street View Images , 2013, HCOMP.

[156]  Jason B. Mattingley,et al.  From Objects to Landmarks: The Function of Visual Location Information in Spatial Navigation , 2012, Front. Psychology.

[157]  이진희,et al.  창조도시(Creative City) 외 , 2008 .

[158]  Dinesh Manocha,et al.  ClearPath: highly parallel collision avoidance for multi-agent simulation , 2009, SCA '09.

[159]  Paul M. Torrens Behavioral Intelligence for Geospatial Agents in Urban Environments , 2007, IAT.

[160]  Adrian Schwaninger,et al.  Turn Right or Turn Left? Heuristic of Adhering to the Direction of Destination , 2011 .

[161]  M. Raubal UMAN WAYFINDING IN UNFAMILIAR BUILDINGS : A SIMULATION WITH A COGNIZING AGENT , 2001 .

[162]  Norman I. Badler Artificial Intelligence, Natural Language, and Simulation for Human Animation , 1989 .

[163]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[164]  Alberto Menache,et al.  Understanding Motion Capture for Computer Animation and Video Games , 1999 .

[165]  Dave H. Eberly Game Physics , 2003 .

[166]  C. Lawton STRATEGIES FOR INDOOR WAYFINDING: THE ROLE OF ORIENTATION , 1996 .

[167]  Charles Tijus,et al.  Pedestrian crossing decision-making: A situational and behavioral approach , 2009 .

[168]  Daniel Thalmann,et al.  Towards Interactive Real‐Time Crowd Behavior Simulation , 2002, Comput. Graph. Forum.

[169]  André Borrmann,et al.  Concurrent Hierarchical Finite State Machines for Modeling Pedestrian Behavioral Tendencies , 2014 .

[170]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.

[171]  Alison J. Heppenstall,et al.  Using Hybrid Agent-Based Systems to Model Spatially-Influenced Retail Markets , 2006, J. Artif. Soc. Soc. Simul..

[172]  Norman I. Badler,et al.  Towards Personalities for Animated Agents with Reactive and Planning Behaviors , 1997, Creating Personalities for Synthetic Actors.

[173]  Kikuo Fujimura Path planning with multiple objectives , 1996, IEEE Robotics Autom. Mag..

[174]  T. Meilinger,et al.  Ask for directions or use a map: A field experiment on spatial orientation and wayfinding in an urban environment , 2008 .

[175]  David H. Eberly,et al.  Geometric Tools for Computer Graphics , 2002 .

[176]  Andrew U. Frank,et al.  Spatial and Cognitive Simulation with Multi-agent Systems , 2001, COSIT.

[177]  Jirí Zára,et al.  Polypostors: 2D polygonal impostors for 3D crowds , 2008, I3D '08.

[178]  Xiulan Wen,et al.  A Hybrid Particle Swarm Optimization for Manipulator Inverse Kinematics Control , 2008, ICIC.

[179]  Michael Batty,et al.  Virtual Environments Begin to Embrace Process‐based Geographic Analysis , 2015, Trans. GIS.

[180]  T. Gärling,et al.  Environment, cognition, and action : an integrated approach , 1991 .

[181]  Chenglin Miao,et al.  Place cells in the hippocampus: Eleven maps for eleven rooms , 2014, Proceedings of the National Academy of Sciences.

[182]  Stephan Winter,et al.  Structural Salience of Elements of the City , 2007 .

[183]  Dana H. Ballard,et al.  Modeling embodied visual behaviors , 2007, TAP.

[184]  Paul M. Torrens,et al.  Slipstreaming human geosimulation in virtual geographic environments , 2015, Ann. GIS.

[185]  W. Wolovich,et al.  A computational technique for inverse kinematics , 1984, The 23rd IEEE Conference on Decision and Control.

[186]  Martin Raubal,et al.  Comparing the Complexity of Wayfinding Tasks in Built Environments , 1998 .

[187]  R. Golledge Representing, interpreting, and using cognized environments , 1978 .

[188]  A E Patla,et al.  Where and when do we look as we approach and step over an obstacle in the travel path? , 1997, Neuroreport.

[189]  A. Pentland Automatic mapping and modeling of human networks , 2007 .

[190]  Norman I. Badler,et al.  Modeling Crowd and Trained Leader Behavior during Building Evacuation , 2006, IEEE Computer Graphics and Applications.

[191]  W. Whyte The social life of small urban spaces , 1980 .

[192]  J. Krause,et al.  Collective behavior in road crossing pedestrians: the role of social information , 2010 .

[193]  Demetri Terzopoulos,et al.  Artificial fishes: Autonomous locomotion, perception, behavior, and learning in a simulated physical world , 1994 .

[194]  S.P.C.K. Fernando,et al.  The Defensible space , 2011 .

[195]  Lin Sun,et al.  Hunting or waiting? Discovering passenger-finding strategies from a large-scale real-world taxi dataset , 2011, 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops).

[196]  Volker Schneider,et al.  Egress Route Choice Modelling—Concepts and Applications , 2010 .

[197]  Paul M. Torrens,et al.  Geographic Automata Systems , 2005, Int. J. Geogr. Inf. Sci..

[198]  Craig W. Reynolds An evolved, vision-based behavioral model of coordinated group motion , 1993 .

[199]  Norman I. Badler,et al.  Virtual Crowds: Methods, Simulation, and Control , 2008, Virtual Crowds: Methods, Simulation, and Control.

[200]  N. Gale,et al.  Exploring the anchor-point hypothesis of spatial cognition , 1987 .

[201]  J. Barlow,et al.  Smart Mobs: The Next Social Revolution , 2003 .

[202]  Stéphane Donikian,et al.  A synthetic-vision based steering approach for crowd simulation , 2010, ACM Transactions on Graphics.

[203]  S. Bitgood,et al.  Not Another Step! Economy of Movement and Pedestrian Choice Point Behavior in Shopping Malls , 2006 .

[204]  John E. Hershey,et al.  Computation , 1991, Digit. Signal Process..

[205]  Jean-Claude Latombe,et al.  Motion Planning: A Journey of Robots, Molecules, Digital Actors, and Other Artifacts , 1999, Int. J. Robotics Res..

[206]  Dirk Helbing,et al.  Self-Organizing Pedestrian Movement , 2001 .

[207]  Takeshi Sakuma,et al.  Psychological model for animating crowded pedestrians , 2005, Comput. Animat. Virtual Worlds.

[208]  Julian Hine,et al.  Traffic barriers and pedestrian crossing behaviour , 1993 .

[209]  Lucas Kovar,et al.  Flexible automatic motion blending with registration curves , 2003, SCA '03.

[210]  Hartwig H. Hochmair,et al.  Investigating the Effectiveness of the Least-Angle Strategy for Wayfinding in Unknown Street Networks , 2005 .

[211]  D. Elliott,et al.  Stepping up to a new level: effects of blurring vision in the elderly. , 2004, Investigative ophthalmology & visual science.

[212]  Kathryn Zeitz,et al.  Injury Occurrences at a Mass Gathering Event , 2005 .

[213]  Michael Girard,et al.  Computational modeling for the computer animation of legged figures , 1998 .

[214]  Cécile Appert-Rolland,et al.  Realistic following behaviors for crowd simulation , 2012, Comput. Graph. Forum.

[215]  Michael Batty,et al.  Predicting where we walk , 1997, Nature.

[216]  Philippe Gaussier,et al.  A Hierarchy of Associations in Hippocampo-Cortical Systems: Cognitive Maps and Navigation Strategies , 2005, Neural Computation.

[217]  H. Miedema,et al.  Influence of environmental street characteristics on walking route choice of elderly people , 2009 .

[218]  A. Devlin,et al.  Interactive wayfinding: Use of cues by men and women , 1995 .

[219]  Stacy Marsella,et al.  Embodied Autonomous Agents , 2014, Handbook of Virtual Environments, 2nd ed..

[220]  Alexander S. Szalay,et al.  Data-Intensive Computing in the 21st Century , 2008, Computer.

[221]  Marcelo R. Campo,et al.  Easy gesture recognition for Kinect , 2014, Adv. Eng. Softw..

[222]  Barbara Yersin,et al.  Steering a Virtual Crowd Based on a Semantically Augmented Navigation Graph , 2005 .

[223]  Stéphane Donikian,et al.  A scenario language to orchestrate virtual world evolution , 2003, SCA '03.

[224]  Serge P. Hoogendoorn,et al.  Experimental Research of Pedestrian Walking Behavior , 2003 .

[225]  Norman I. Badler,et al.  Making Them Move: Mechanics, Control & Animation of Articulated Figures , 1990 .

[226]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[227]  A. Turner,et al.  From Isovists to Visibility Graphs: A Methodology for the Analysis of Architectural Space , 2001 .

[228]  Tijs Neutens,et al.  Mobile Mapping of Sporting Event Spectators Using Bluetooth Sensors: Tour of Flanders 2011 , 2012, Sensors.

[229]  N Burgess,et al.  Place cells, navigational accuracy, and the human hippocampus. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[230]  Hui Lin,et al.  Virtual Geographic Environment: A Workspace for Computer-Aided Geographic Experiments , 2013 .

[231]  Alex Pentland,et al.  Reality mining: sensing complex social systems , 2006, Personal and Ubiquitous Computing.

[232]  Adam Jacobs,et al.  The pathologies of big data , 2009, Commun. ACM.

[233]  Dirk Helbing,et al.  How simple rules determine pedestrian behavior and crowd disasters , 2011, Proceedings of the National Academy of Sciences.

[234]  Edwin E. Catmull,et al.  The problems of computer-assisted animation , 1978, SIGGRAPH.

[235]  A. Moudon,et al.  Effects of Site Design on Pedestrian Travel in Mixed-Use, Medium-Density Environments , 1997 .

[236]  Taku Komura,et al.  Interaction patches for multi-character animation , 2008, ACM Trans. Graph..

[237]  Arthur Appel,et al.  Some techniques for shading machine renderings of solids , 1968, AFIPS Spring Joint Computing Conference.

[238]  W. McIlroy,et al.  Gaze behavior governing balance recovery in an unfamiliar and complex environment , 2007, Neuroscience Letters.

[239]  Jesus Virseda,et al.  Cell Phone Analytics: Scaling Human Behavior Studies into the Millions , 2013 .

[240]  Hui Lin,et al.  Integration of a computational grid and virtual geographic environment to facilitate air pollution simulation , 2013, Comput. Geosci..

[241]  Douglas Nitz Neuroscience: The inside story on place cells , 2009, Nature.

[242]  Hjp Harry Timmermans,et al.  Transportation systems, retail environments and pedestrian trip chaining behaviour: Modelling issues and applications , 1992 .

[243]  M. Kwan Gender and Individual Access to Urban Opportunities: A Study Using Space–Time Measures , 1999 .

[244]  Stephen M. Kosslyn,et al.  A Simulation of Visual Imagery , 1977, Cogn. Sci..

[245]  Benedikt Stefansson Swarm: An Object Oriented Simulation Platform Applied to Markets and Organizations , 1997, Evolutionary Programming.

[246]  Norman I. Badler,et al.  Creating crowd variation with the OCEAN personality model , 2008, AAMAS.

[247]  Andrew U. Frank,et al.  Influence of estimation errors on wayfinding-decisions in unknown street networks – analyzing the least-angle strategy , 2001, Spatial Cogn. Comput..

[248]  Zoran Popovic,et al.  Motion warping , 1995, SIGGRAPH.

[249]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[250]  Stéphane Donikian,et al.  Data Based Steering of Virtual Human Using a Velocity-Space Approach , 2009, MIG.

[251]  A. Townsend Life in the Real-Time City: Mobile Telephones and Urban Metabolism , 2000 .

[252]  Mark H. Overmars,et al.  High quality navigation in computer games , 2007, Sci. Comput. Program..

[253]  L. Bengtsson,et al.  Improved Response to Disasters and Outbreaks by Tracking Population Movements with Mobile Phone Network Data: A Post-Earthquake Geospatial Study in Haiti , 2011, PLoS medicine.

[254]  K. Sycara,et al.  This Is a Publication of the American Association for Artificial Intelligence Multiagent Systems Multiagent System Issues and Challenges Individual Agent Reasoning Task Allocation Multiagent Planning Recognizing and Resolving Conflicts Managing Communication Modeling Other Agents Managing Resources , 2022 .

[255]  Demetri Terzopoulos Perceptive agents and systems in virtual reality , 2003, VRST '03.

[256]  J. Loomis,et al.  Immersive virtual environment technology as a basic research tool in psychology , 1999, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[257]  Tim J. Ellis,et al.  Path detection in video surveillance , 2002, Image Vis. Comput..

[258]  Martin Raubal,et al.  Wayfinding: Affordances and Agent Simulation , 2008, ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems.

[259]  Glenn Reinman,et al.  A Behavior-Authoring Framework for Multiactor Simulations , 2011, IEEE Computer Graphics and Applications.

[260]  Randy Gimblett,et al.  RBSim 2: Simulating the complex interactions between human movement and the outdoor recreation environment , 2003 .

[261]  Simon Garnier,et al.  Visual attention and the acquisition of information in human crowds , 2012, Proceedings of the National Academy of Sciences.

[262]  J E Cutting,et al.  Wayfinding, displacements, and mental maps: velocity fields are not typically used to determine one's aimpoint. , 1995, Journal of experimental psychology. Human perception and performance.

[263]  Carol O'Sullivan,et al.  Geopostors: a real-time geometry/impostor crowd rendering system , 2005, SIGGRAPH '05.

[264]  Michael Batty,et al.  Exploring Isovist Fields: Space and Shape in Architectural and Urban Morphology , 2001 .

[265]  P G Gipps,et al.  A micro simulation model for pedestrian flows , 1985 .

[266]  Paul M. Torrens,et al.  Spatial and temporal analysis of pedestrian egress behavior and efficiency , 2007, GIS.

[267]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[268]  Víctor Soto,et al.  Characterizing Urban Landscapes Using Geolocated Tweets , 2012, 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing.

[269]  C. Korte,et al.  Traffic Noise, Environmental Awareness, and Pedestrian Behavior , 1980 .

[270]  Bernard Moulin,et al.  A Spatial Model Based on the Notions of Spatial Conceptual Map and of Object's Influence Areas , 1999, COSIT.

[271]  Michael Gleicher,et al.  Scalable behaviors for crowd simulation , 2004, Comput. Graph. Forum.

[272]  R. Cervero,et al.  TRAVEL DEMAND AND THE 3DS: DENSITY, DIVERSITY, AND DESIGN , 1997 .

[273]  Heinrich H Bülthoff,et al.  Isovist Analysis Captures Properties of Space Relevant for Locomotion and Experience , 2007, Perception.

[274]  André Borrmann,et al.  A hybrid multi-scale approach for simulation of pedestrian dynamics , 2013 .

[275]  Lukas Furst Cities And Complexity Understanding Cities With Cellular Automata Agent Based Models And Fractals , 2016 .

[276]  Tommaso Toffoli,et al.  Cellular automata machines - a new environment for modeling , 1987, MIT Press series in scientific computation.

[277]  R. Golledge Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes , 2010 .

[278]  Arne D. Ekstrom,et al.  Cellular networks underlying human spatial navigation , 2003, Nature.

[279]  G. Burnham,et al.  Health care at mass gatherings. , 1998, JAMA.

[280]  Reginald G. Golledge,et al.  Place recognition and wayfinding: Making sense of space , 1992 .

[281]  J. Cutting,et al.  Recognizing friends by their walk: Gait perception without familiarity cues , 1977 .

[282]  Christian Bauckhage,et al.  Loveparade 2010: Automatic video analysis of a crowd disaster , 2012, Comput. Vis. Image Underst..

[283]  P. Hancock,et al.  The Perception of Arrival Time for Different Oncoming Vehicles at an Intersection , 1994 .

[284]  Martin Raubal,et al.  Ontology and epistemology for agent-based wayfinding simulation , 2001, Int. J. Geogr. Inf. Sci..

[285]  Justine Cassell,et al.  BEAT: the Behavior Expression Animation Toolkit , 2001, Life-like characters.

[286]  Stephen Chenney,et al.  Flow tiles , 2004, SCA '04.

[287]  Christopher Cocking,et al.  The mass psychology of disasters and emergency evacuations: A research report and implications for the Fire and Rescue Service , 2008 .

[288]  Howard Rheingold,et al.  Smart Mobs: The Next Social Revolution , 2002 .

[289]  Norman I. Badler,et al.  Real-Time Inverse Kinematics Techniques for Anthropomorphic Limbs , 2000, Graph. Model..

[290]  Dinesh Manocha,et al.  PLEdestrians: a least-effort approach to crowd simulation , 2010, SCA '10.

[291]  Norman I. Badler,et al.  Inverse kinematics positioning using nonlinear programming for highly articulated figures , 1994, TOGS.

[292]  J. Kerridge,et al.  Human Movement Behaviour in Urban Spaces: Implications for the Design and Modelling of Effective Pedestrian Environments , 2004 .

[293]  T. Hägerstrand DIORAMA, PATH AND PROJECT , 1982 .

[294]  Craig W. Reynolds Steering Behaviors For Autonomous Characters , 1999 .

[295]  Anthony Townsend,et al.  Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia , 2013 .

[296]  Aurélie Dommes,et al.  Is Mild Dementia Related to Unsafe Street-Crossing Decisions? , 2015, Alzheimer disease and associated disorders.

[297]  Michael Batty,et al.  Big data, smart cities and city planning , 2013, Dialogues in human geography.

[298]  Peter Willemsen,et al.  Does the Quality of the Computer Graphics Matter when Judging Distances in Visually Immersive Environments? , 2004, Presence: Teleoperators & Virtual Environments.

[299]  Harry Timmermans,et al.  Classifying Pedestrian Shopping Behaviour According to Implied Heuristic Choice Rules , 2001 .

[300]  Ya Tian,et al.  Large-scale taxi O/D visual analytics for understanding metropolitan human movement patterns , 2015, J. Vis..

[301]  Timothy A. Kohler Dynamics in Human and Primate Societies , 2000 .

[302]  Michel Bierlaire,et al.  Discrete Choice Models for Pedestrian Walking Behavior , 2006 .

[303]  Thomas W. Calvert,et al.  Goal-directed, dynamic animation of human walking , 1989, SIGGRAPH.

[304]  Dinesh Manocha,et al.  Interactive Navigation of Heterogeneous Agents Using Adaptive Roadmaps , 2009, IEEE Transactions on Visualization and Computer Graphics.

[305]  H. Timmermans,et al.  A Model of Pedestrian Route Choice and Demand for Retail Facilities within Inner-City Shopping Areas , 2010 .

[306]  Alexandra Kirsch,et al.  Strategies of locomotor collision avoidance. , 2013, Gait & posture.

[307]  Alison J. Heppenstall,et al.  "Space, the Final Frontier": How Good are Agent-Based Models at Simulating Individuals and Space in Cities? , 2016, Syst..

[308]  Larry S. Davis,et al.  Computational Models of Space: Isovists and Isovist Fields , 1979 .

[309]  Andrew Hudson-Smith,et al.  Agent Street: An Environment for Exploring Agent-Based Models in Second Life , 2009, J. Artif. Soc. Soc. Simul..

[310]  Dirk Helbing A Fluid-Dynamic Model for the Movement of Pedestrians , 1992, Complex Syst..

[311]  Manuela M. Veloso,et al.  GameBots: a flexible test bed for multiagent team research , 2002, CACM.

[312]  Luc Van Gool,et al.  Procedural modeling of buildings , 2006, ACM Trans. Graph..

[313]  Jehee Lee,et al.  Precomputing avatar behavior from human motion data , 2004, SCA '04.

[314]  Norman I. Badler,et al.  How the Ocean Personality Model Affects the Perception of Crowds , 2011, IEEE Computer Graphics and Applications.

[315]  STEPHEN C ASS To beat the competition , video games are getting smarter , 2001 .

[316]  Soraia Raupp Musse,et al.  Crowd Analysis Using Computer Vision Techniques , 2010, IEEE Signal Processing Magazine.

[317]  Robert Weibel,et al.  Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects , 2009, Comput. Environ. Urban Syst..

[318]  W. Bainbridge The Scientific Research Potential of Virtual Worlds , 2007, Science.

[319]  Manfred Lau,et al.  Precomputed search trees: planning for interactive goal-driven animation , 2006, SCA '06.

[320]  Céline Loscos,et al.  Image/Based Crowd Rendering , 2002, IEEE Computer Graphics and Applications.

[321]  Matthieu Lenoir,et al.  Intrinsic and extrinsic factors of turning preferences in humans , 2006, Neuroscience Letters.

[322]  Theodore R. Schatzki,et al.  Spatial Ontology and Explanation , 1991 .

[323]  Dinesh Manocha,et al.  Interactive navigation of multiple agents in crowded environments , 2008, I3D '08.

[324]  Michael O'Neill,et al.  Effects of Signage and Floor Plan Configuration on Wayfinding Accuracy , 1991 .

[325]  Sabine Timpf,et al.  On the assessment of landmark salience for human navigation , 2007, Cognitive Processing.

[326]  Paul A. Braren,et al.  How We Avoid Collisions With Stationary and Moving Obstacles , 2004 .

[327]  Daniel Thalmann,et al.  Automatic derivation of curved human walking trajectories from synthetic vision , 1994, Proceedings of Computer Animation '94.

[328]  David O'Sullivan,et al.  “So Go Downtown”: Simulating Pedestrian Movement in Town Centres , 2001 .

[329]  Ming Gu,et al.  The IFC-based path planning for 3D indoor spaces , 2013, Adv. Eng. Informatics.

[330]  Demetri Terzopoulos,et al.  Autonomous pedestrians , 2007, Graph. Model..

[331]  K. Shriver Influence of Environmental Design on Pedestrian Travel Behavior in Four Austin Neighborhoods , 1997 .

[332]  H. Timmermans,et al.  City centre entry points, store location patterns and pedestrian route choice behaviour : a microlevel simulation model , 1986 .

[333]  Daniel Thalmann,et al.  Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cav.147 , 2022 .

[334]  L. F. Henderson,et al.  The Statistics of Crowd Fluids , 1971, Nature.

[335]  Tom Porter Creating lifelike characters in Toy Story , 1997, SGAR.

[336]  Victor J. Blue,et al.  Cellular automata microsimulation for modeling bi-directional pedestrian walkways , 2001 .

[337]  Cecilia Mascolo,et al.  Hoodsquare: Modeling and Recommending Neighborhoods in Location-Based Social Networks , 2013, 2013 International Conference on Social Computing.

[338]  K. Kitazawa,et al.  Pedestrian Vision and Collision Avoidance Behavior: Investigation of the Information Process Space of Pedestrians Using an Eye Tracker , 2010 .

[339]  Ronald Azuma,et al.  Recent Advances in Augmented Reality , 2001, IEEE Computer Graphics and Applications.

[340]  John Bohannon Directing the Herd: Crowds and the Science of Evacuation , 2005, Science.

[341]  Julian Hine,et al.  Pedestrian travel experiences: Assessing the impact of traffic on behaviour and perceptions of safety using an in-depth interview technique , 1996 .

[342]  Takahiro Higuchi,et al.  Directional bias in the body while walking through a doorway: its association with attentional and motor factors , 2011, Experimental Brain Research.

[343]  Daniel Thalmann,et al.  Crowd patches: populating large-scale virtual environments for real-time applications , 2009, I3D '09.

[344]  John Lasseter,et al.  Principles of traditional animation applied to 3D computer animation , 1987, SIGGRAPH.

[345]  Nelson Minar,et al.  The Swarm Simulation System: A Toolkit for Building Multi-Agent Simulations , 1996 .

[346]  Serge P. Hoogendoorn,et al.  Gas-Kinetic Modeling and Simulation of Pedestrian Flows , 2000 .

[347]  Andrew Hudson-Smith,et al.  NeoGeography and Web 2.0: concepts, tools and applications , 2009, J. Locat. Based Serv..

[348]  Iain D Couzin,et al.  The directional flow of visual information transfer between pedestrians , 2012, Biology Letters.

[349]  D. Walton,et al.  Factors Influencing the Decision to Drive or Walk Short Distances to Public Transport Facilities , 2010 .

[350]  P. Torrens,et al.  Geosimulation: Automata-based modeling of urban phenomena , 2004 .

[351]  Robert Weibel,et al.  Movement similarity assessment using symbolic representation of trajectories , 2012, Int. J. Geogr. Inf. Sci..

[352]  Thierry Brenac,et al.  Influence of built environment on pedestrian's crossing decision. , 2014, Accident; analysis and prevention.

[353]  Kazutoshi Sumiya,et al.  Crowd-sourced cartography: measuring socio-cognitive distance for urban areas based on crowd's movement , 2012, UbiComp '12.

[354]  Armin Seyfried,et al.  Experimental Study on Pedestrian Flow through Wide Bottleneck , 2014 .

[355]  Zeltzer,et al.  Motor Control Techniques for Figure Animation , 1982, IEEE Computer Graphics and Applications.

[356]  Ranxiao Frances Wang,et al.  Seeking one’s heading through eye movements , 2000, Psychonomic bulletin & review.

[357]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.

[358]  Alex Pentland,et al.  Honest Signals - How They Shape Our World , 2008 .

[359]  Thomas Driemeyer Rendering with mental ray® , 2000, mental ray® Handbooks.

[360]  Andrew Crooks,et al.  Agent-based Models of Geographical Systems , 2012 .

[361]  Dimitris N. Metaxas,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Group Behavior from Video: a Data-driven Approach to Crowd Simulation , 2022 .

[362]  John E. Laird,et al.  Research in human-level AI using computer games , 2002, CACM.

[363]  J. Tresilian Visually timed action: time-out for ‘tau’? , 1999, Trends in Cognitive Sciences.

[364]  Okan Arikan,et al.  Interactive motion generation from examples , 2002, ACM Trans. Graph..

[365]  M. Batty,et al.  Safety in Numbers? Modelling Crowds and Designing Control for the Notting Hill Carnival , 2003 .

[366]  John G. Mikhael,et al.  Functional neuroanatomy of intuitive physical inference , 2016, Proceedings of the National Academy of Sciences.

[367]  M. Kwan,et al.  Natural and built environmental exposures on children's active school travel: A Dutch global positioning system-based cross-sectional study. , 2016, Health & place.

[368]  William Uricchio,et al.  The algorithmic turn: photosynth, augmented reality and the changing implications of the image , 2011 .

[369]  Arthur L. Stinchcombe Behavior in Public Places.Erving Goffman , 1964 .

[370]  Harry J. P. Timmermans,et al.  A Multi-Agent Cellular Automata System for Visualising Simulated Pedestrian Activity , 2000, ACRI.

[371]  Petros Faloutsos,et al.  The virtual stuntman: dynamic characters with a repertoire of autonomous motor skills , 2001, Comput. Graph..

[372]  A. Siegel,et al.  The development of spatial representations of large-scale environments. , 1975, Advances in child development and behavior.

[373]  Ken Perlin,et al.  Four views of procedural character animation for computer games , 2008, Sandbox '08.

[374]  Christoph Hölscher,et al.  Taxonomy of Human Wayfinding Tasks: A Knowledge-Based Approach , 2009, Spatial Cogn. Comput..

[375]  P. Torrens,et al.  Modeling Geographic Behavior in Riotous Crowds , 2013 .

[376]  Shivanand Balram,et al.  Integrating Geographic Information Systems and Agent-Based Modeling Techniques for Simulating Social and Ecological Processes , 2003, The Professional Geographer.

[377]  Li Yin,et al.  3D spatial-temporal GIS modeling of urban environments to support design and planning processes , 2014 .

[378]  Quan Dang,et al.  Path planning approach in unknown environment , 2010, Int. J. Autom. Comput..

[379]  Shino Shiode,et al.  Analysis of a Distribution of Point Events Using the Network-Based Quadrat Method , 2008 .

[380]  Pin Lv,et al.  Least visible path analysis in raster terrain , 2008, Int. J. Geogr. Inf. Sci..

[381]  Yoshiaki Takeuchi,et al.  Individual differences in wayfinding strategies , 2003 .

[382]  Bruce H. Thomas,et al.  A wearable computer system with augmented reality to support terrestrial navigation , 1998, Digest of Papers. Second International Symposium on Wearable Computers (Cat. No.98EX215).

[383]  Andrew U. Frank,et al.  Agent-Based Simulation of Spatial Cognition and Wayfinding in Building Fire Emergency Evacuation , 2007 .

[384]  Tony White,et al.  Macroscopic effects of microscopic forces between agents in crowd models , 2007 .

[385]  Demetri Terzopoulos,et al.  Active Perception in Virtual Humans , 2000 .

[386]  Robert B. McGhee,et al.  Finite state control of quadruped locomotion , 1967 .

[387]  Peter M. Owens NEIGHBORHOOD FORM AND PEDESTRIAN LIFE: TAKING A CLOSER LOOK , 1993 .

[388]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, SIGGRAPH 2004.

[389]  Menno P. Witter,et al.  Place Cells and Place Recognition Maintained by Direct Entorhinal-Hippocampal Circuitry , 2002, Science.

[390]  James Clerk Maxwell,et al.  V. Illustrations of the dynamical theory of gases.—Part I. On the motions and collisions of perfectly elastic spheres , 1860 .

[391]  Edward A. Lee Cyber Physical Systems: Design Challenges , 2008, 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC).

[392]  A. Siegel,et al.  Way finding and cognitive mapping in large-scale environments: a test of a developmental model. , 1983, Journal of experimental child psychology.

[393]  Marlon G. Boarnet,et al.  Built Environment as Determinant of Walking Behavior: Analyzing Nonwork Pedestrian Travel in Portland, Oregon , 2001 .