Controlling the domain structure of ferroelectric nanoparticles using tunable shells

The possibility of controlling the domain structure in spherical nanoparticles of uniaxial and multiaxial ferroelectrics using a shell with tunable dielectric properties is studied in the framework of Landau-Ginzburg-Devonshire theory. Finite element modeling and analytical calculations are performed for Sn2P2S6 and BaTiO3 nanoparticles covered with high-k polymer, temperature dependent isotropic paraelectric strontium titanate, or anisotropic liquid crystal shells with a strongly temperature dependent dielectric permittivity tensor. It appeared that the tunable paraelectric shell with a temperature dependent high dielectric permittivity (~300 - 3000) provides much more efficient screening of the nanoparticle polarization than the polymer shell with a much smaller (~10) temperature-independent permittivity. The tunable dielectric anisotropy of the liquid crystal shell (~ 1 - 100) adds a new level of functionality for the control of ferroelectric domains morphology (including a single-domain state, domain stripes and cylinders, meandering and labyrinthine domains, and polarization flux-closure domains and vortexes) in comparison with isotropic paraelectric and polymer shells. The obtained results indicate the opportunities to control the domain structure morphology of ferroelectric nanoparticles covered with tunable shells, which can lead to the generation of new ferroelectric memory and advanced cryptographic materials.

[1]  R. Popielarz,et al.  Polymer Composites with High Dielectric Constant , 2002 .

[2]  I. Golovina,et al.  Magnetic properties of nanocrystalline KNbO3 , 2013 .

[3]  Anatoliy Glushchenko,et al.  Dipole moment and spontaneous polarization of ferroelectric nanoparticles in a nonpolar fluid suspension , 2011 .

[4]  Y. Ou,et al.  Inhomogeneous electric-field–induced negative/positive electrocaloric effects in ferroelectric nanoparticles , 2017 .

[5]  X. Zhong,et al.  Influence of vortex domain switching on the electrocaloric property of a ferroelectric nanoparticle , 2014 .

[6]  Chang Q. Sun,et al.  Grain-size effect on ferroelectric P b ( Z r 1 − x Ti x ) O 3 solid solutions induced by surface bond contraction , 2001 .

[7]  Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures. , 2016, Reports on progress in physics. Physical Society.

[8]  Gabriele Lenzini,et al.  High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication , 2016, Scientific Reports.

[9]  Y. Parkhomenko,et al.  Theoretical Prediction and Direct Observation of Metastable Non-Polar Regions in Domain Structure of Sn2P2S6 Ferroelectrics with Triple-Well Potential , 2012 .

[10]  V. Strelchuk,et al.  Size effects in the temperatures of phase transitions in KNbO3 nanopowder , 2013 .

[11]  Zhe Zhao,et al.  Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO 3 ceramics , 2004 .

[12]  Jian-Sheng Wang,et al.  Size effect on the ferroelectric phase transition in SrBi2Ta2O9 nanoparticles , 2003 .

[13]  Changchun Wang,et al.  Preparation of thermoresponsive core–shell polymeric microspheres and hollow PNIPAM microgels , 2008 .

[14]  Direct variational method , 2020, Mean Field Theory.

[15]  Sergei V. Kalinin,et al.  Intrinsic structural instabilities of domain walls driven by gradient coupling: Meandering antiferrodistortive-ferroelectric domain walls inBiFeO3 , 2018, Physical Review B.

[16]  J. Gregg Exotic Domain States in Ferroelectrics: Searching for Vortices and Skyrmions , 2012 .

[17]  J. Hlinka,et al.  Domain walls of ferroelectric BaTiO 3 within the Ginzburg-Landau-Devonshire phenomenological model , 2010, 1001.1376.

[18]  V. Gopalan,et al.  Rotomagnetic coupling in fine-grained multiferroic BiFe O 3 : Theory and experiment , 2018, 1803.02805.

[19]  Jirong Sun,et al.  Impact of interfacial effects on ferroelectric resistance switching of Au/BiFeO3/Nb:SrTiO3(100) Schottky junctions , 2017 .

[20]  P. Maksymovych,et al.  Analytical description of domain morphology and phase diagrams of ferroelectric nanoparticles , 2018, Acta Materialia.

[21]  A. Tagantsev,et al.  Interface-induced phenomena in polarization response of ferroelectric thin films , 2006 .

[22]  Long-Qing Chen,et al.  Strain effect on phase transitions of BaTiO3 nanowires , 2011 .

[23]  S. Berger,et al.  Reversible electric field induced nonferroelectric to ferroelectric phase transition in single crystal nanorods of potassium nitrate , 2007 .

[24]  M. Glinchuk,et al.  Flexo-chemo effect in nanoferroics as a source of critical size disappearance at size-induced phase transitions , 2016 .

[25]  O. Heinonen,et al.  Topological phase transformations and intrinsic size effects in ferroelectric nanoparticles. , 2017, Nanoscale.

[26]  A. Morozovska,et al.  Mapping gradient-driven morphological phase transition at the conductive domain walls of strained multiferroic films , 2019, Physical Review B.

[27]  V. Shvartsman,et al.  Fixed volume effect on polar properties and phase diagrams of ferroelectric semi-ellipsoidal nanoparticles , 2017, The European Physical Journal B.

[28]  J. Hlinka,et al.  Phenomenological model of a 90° domain wall inBaTiO3-type ferroelectrics , 2006 .

[29]  M. Glinchuk,et al.  Superparaelectric phase in the ensemble of noninteracting ferroelectric nanoparticles , 2008, 0806.2127.

[30]  Influence of elastic strain gradient on the upper limit of flexocoupling strength, spatially modulated phases, and soft phonon dispersion in ferroics , 2016, 1606.01547.

[31]  L. Eric Cross,et al.  Flexoelectricity of barium titanate , 2006 .

[32]  A. Tagantsev,et al.  Finite-temperature flexoelectricity in ferroelectric thin films from first principles , 2012 .

[33]  Wenhui Ma Surface tension and Curie temperature in ferroelectric nanowires and nanodots , 2009 .

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  Yue Zheng,et al.  Shape-induced phase transition of vortex domain structures in ferroelectric nanodots and their controllability by electrical and mechanical loads , 2017 .

[36]  Zuhuang Chen,et al.  Giant Polarization Sustainability in Ultrathin Ferroelectric Films Stabilized by Charge Transfer , 2017, Advanced materials.

[37]  Shejun Hu,et al.  High-density array of ferroelectric nanodots with robust and reversibly switchable topological domain states , 2017, Science Advances.

[38]  R. Johnsen,et al.  Theory and Experiment , 2010 .

[39]  Dieter Bimberg,et al.  Spontaneous ordering of nanostructures on crystal surfaces , 1999 .

[40]  Bo Wang,et al.  Understanding, Predicting, and Designing Ferroelectric Domain Structures and Switching Guided by the Phase-Field Method , 2019, Annual Review of Materials Research.

[41]  T. Tyson,et al.  Uncovering the mystery of ferroelectricity in zero dimensional nanoparticles , 2018, Nanoscale advances.

[42]  A. Bratkovsky,et al.  Vortex polarization states in nanoscale ferroelectric arrays. , 2009, Nano letters.

[43]  R. Blinc,et al.  Spontaneous flexoelectric/flexomagnetic effect in nanoferroics , 2009 .

[44]  P. Perriat,et al.  Thermodynamic considerations of the grain size dependency of material properties , 1994 .

[45]  A. Glushchenko,et al.  Harvesting Single Ferroelectric Domain Stressed Nanoparticles for Optical and Ferroic Applications , 2010 .

[46]  Gary Cook,et al.  Electric field interactions and aggregation dynamics of ferroelectric nanoparticles in isotropic fluid suspensions , 2011 .

[47]  R. Blinc,et al.  Giant magnetoelectric effect induced by intrinsic surface stress in ferroic nanorods , 2007, 0709.3058.

[48]  Shin-Tson Wu,et al.  Low temperature and high frequency effects on polymer-stabilized blue phase liquid crystals with large dielectric anisotropy , 2014 .

[49]  R. Harder,et al.  Three-dimensional imaging of vortex structure in a ferroelectric nanoparticle driven by an electric field , 2017, Nature Communications.

[50]  Marius Grundmann,et al.  The contribution of particle core and surface to strain, disorder and vibrations in thiolcapped CdTe nanocrystals , 1998 .

[51]  Haitao Huang,et al.  Surface bond contraction and its effect on the nanometric sized lead zirconate titanate , 2000 .

[52]  Zhidong Zhou,et al.  The influence of the electrical boundary condition on domain structures and electrocaloric effect of PbTiO3 nanostructures , 2016 .

[53]  Hui Zhang,et al.  Phase coexistence evolution of nano BaTiO3 as function of particle sizes and temperatures , 2012 .

[54]  Size effects of ferroelectric and magnetoelectric properties of semi-ellipsoidal bismuth ferrite nanoparticles , 2017, 1701.06468.

[55]  X. Zhong,et al.  Giant electrocaloric effects in ferroelectric nanostructures with vortex domain structures , 2013 .

[56]  A. Morozovska,et al.  Effect of Vegard strains on the extrinsic size effects in ferroelectric nanoparticles , 2014 .

[57]  D. Batens,et al.  Theory and Experiment , 1988 .

[58]  M. Glinchuk,et al.  Surface and finite size effects impact on the phase diagrams, polar, and dielectric properties of (Sr,Bi)Ta2O9 ferroelectric nanoparticles , 2016 .

[59]  Anna N. Morozovska,et al.  Ferroelectricity enhancement in confined nanorods: Direct variational method , 2006 .

[60]  Daniel J. Singer To the Best of Our Knowledge , 2021, The Philosophical Review.

[61]  X. Zhong,et al.  Giant electrocaloric effect in a wide temperature range in PbTiO3 nanoparticle with double-vortex domain structure , 2018, Scientific Reports.

[62]  Dong Chen,et al.  Polarization Rotation in Ultrathin Ferroelectrics Tailored by Interfacial Oxygen Octahedral Coupling. , 2018, ACS nano.

[63]  A. Saada Elasticity : theory and applications , 1993 .

[64]  S. Alpay,et al.  Metastable vortex-like polarization textures in ferroelectric nanoparticles of different shapes and sizes , 2018, Journal of Applied Physics.

[65]  Sergei V. Kalinin,et al.  Topological Defects in Ferroic Materials , 2016 .

[66]  Phase transitions induced by confinement of ferroic nanoparticles , 2007, cond-mat/0703652.

[67]  S. Basun,et al.  Spectroscopic studies of the effects of mechanochemical synthesis on BaTiO3nanocolloids prepared using high-energy ball-milling , 2018, Journal of Applied Physics.

[68]  E. Erdem,et al.  Study of the tetragonal-to-cubic phase transition in PbTiO3 nanopowders , 2006 .

[69]  S. Berger,et al.  Uniform orientation and size of ferroelectric domains , 2005 .

[70]  S. Berger,et al.  Nucleation and growth of single crystals with uniform crystallographic orientation inside alumina nanopores , 2007 .

[71]  S. Pennycook,et al.  Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films , 2015, Science.

[72]  S. Nakhmanson,et al.  Size, shape, and orientation dependence of the field-induced behavior in ferroelectric nanoparticles , 2019, Journal of Applied Physics.

[73]  A. Tagantsev,et al.  Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films , 2000 .

[74]  A. Bell Phenomenologically derived electric field-temperature phase diagrams and piezoelectric coefficients for single crystal barium titanate under fields along different axes , 2001 .

[75]  T. Lü,et al.  Size effect on the dielectric properties of BaTiO3 nanoceramics in a modified Ginsburg-Landau-Devonshire thermodynamic theory , 2006 .

[76]  Frey Mh,et al.  GRAIN-SIZE EFFECT ON STRUCTURE AND PHASE TRANSFORMATIONS FOR BARIUM TITANATE , 1996 .

[77]  A. Tagantsev,et al.  Size effect in ferroelectrics: Competition between geometrical and crystalline symmetries , 2011 .

[78]  Long-qing Chen,et al.  Phase transitions and domain structures of ferroelectric nanoparticles: Phase field model incorporating strong elastic and dielectric inhomogeneity , 2013 .

[79]  Scott,et al.  Clock-model description of incommensurate ferroelectric films and of nematic-liquid-crystal films. , 1986, Physical review. B, Condensed matter.