Numerical analysis of plane cracks in strain-gradient elastic materials

The classical linear elastic fracture mechanics is not valid near the crack tip because of the unrealistic singular stress at the tip. The study of the physical nature of the deformation around the crack tip reveals the dominance of long-range atomic interactive forces. Unlike the classical theory which incorporates only short range forces, a higher-order continuum theory which could predict the effect of long range interactions at a macro scale would be appropriate to understand the deformation around the crack tip. A simplified theory of gradient elasticity proposed by Aifantis is one such grade-2 theory. This theory is used in the present work to numerically analyze plane cracks in strain-gradient elastic materials. Towards this end, a 36 DOF C1 finite element is used to discretize the displacement field. The results show that the crack tip singularity still persists but with a different nature which is physically more reasonable. A smooth closure of the structure of the crack tip is also achieved.

[1]  E. Aifantis,et al.  On the structure of the mode III crack-tip in gradient elasticity , 1992 .

[2]  F. Erdogan,et al.  Stress Distribution in a Nonhomogeneous Elastic Plane With Cracks , 1963 .

[3]  D.,et al.  '-1 Microstructure in Linear Elasticity , 2022 .

[4]  Mechanics of Generalized Continua , 1968 .

[5]  Nathan Ida,et al.  Introduction to the Finite Element Method , 1997 .

[6]  R. D. Mindlin,et al.  On first strain-gradient theories in linear elasticity , 1968 .

[7]  Rhj Ron Peerlings,et al.  Gradient enhanced damage for quasi-brittle materials , 1996 .

[8]  J. Dundurs,et al.  Effect of Elastic Constants on Stress In A Composite Under Plane Deformation , 1967 .

[9]  M. Williams The stresses around a fault or crack in dissimilar media , 1959 .

[10]  M. F. Kanninen,et al.  Inelastic Behavior of Solids , 1970, Science.

[11]  Ioannis Vardoulakis,et al.  A finite element displacement formulation for gradient elastoplasticity , 2001, Bifurcation and Localisation Theory in Geomechanics.

[12]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[13]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[14]  Suman Dasgupta,et al.  A higher‐order triangular plate bending element revisited , 1990 .

[15]  M. Kanninen,et al.  CRACK PROPAGATION IN A CONTINUUM MODEL WITH NONLINEAR ATOMIC SEPARATION LAWS. , 1966 .

[16]  Martin A. Eisenberg,et al.  On finite element integration in natural co‐ordinates , 1973 .

[17]  J. H. Weiner,et al.  Peierls Stress and Creep of a Linear Chain , 1964 .

[18]  E. Sternberg,et al.  The effect of couple-stresses on the stress concentration around a crack☆ , 1967 .

[19]  M. Shi,et al.  Fracture in a higher-order elastic continuum , 2000 .

[20]  O. C. Zienkiewicz,et al.  The finite element method, fourth edition; volume 2: solid and fluid mechanics, dynamics and non-linearity , 1991 .

[21]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[22]  K. Hwang,et al.  The mode III full-field solution in elastic materials with strain gradient effects , 1998 .

[23]  James R. Rice,et al.  Elastic Fracture Mechanics Concepts for Interfacial Cracks , 1988 .

[24]  John W. Hutchinson,et al.  Crack Paralleling an Interface Between Dissimilar Materials , 1987 .

[25]  J. Reddy An introduction to the finite element method , 1989 .

[26]  D. Gazis,et al.  SURFACE EFFECTS AND INITIAL STRESS IN CONTINUUM AND LATTICE MODELS OF ELASTIC CRYSTALS , 1963 .

[27]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[28]  E. Aifantis,et al.  A simple approach to solve boundary-value problems in gradient elasticity , 1993 .

[29]  G. E. Exadaktylos,et al.  Two and Three-Dimentsional Crack Problems in Gradient Elasticity , 1996 .