The ins and outs of inhibitory synaptic plasticity: Neuron types, molecular mechanisms and functional roles

GABAergic interneurons are highly diverse, and their synaptic outputs express various forms of plasticity. Compelling evidence indicates that activity‐dependent changes of inhibitory synaptic transmission play a significant role in regulating neural circuits critically involved in learning and memory and circuit refinement. Here, we provide an updated overview of inhibitory synaptic plasticity with a focus on the hippocampus and neocortex. To illustrate the diversity of inhibitory interneurons, we discuss the case of two highly divergent interneuron types, parvalbumin‐expressing basket cells and neurogliaform cells, which support unique roles on circuit dynamics. We also present recent progress on the molecular mechanisms underlying long‐term, activity‐dependent plasticity of fast inhibitory transmission. Lastly, we discuss the role of inhibitory synaptic plasticity in neuronal circuits’ function. The emerging picture is that inhibitory synaptic transmission in the CNS is extremely diverse, undergoes various mechanistically distinct forms of plasticity and contributes to a much more refined computational role than initially thought. Both the remarkable diversity of inhibitory interneurons and the various forms of plasticity expressed by GABAergic synapses provide an amazingly rich inhibitory repertoire that is central to a variety of complex neural circuit functions, including memory.

[1]  W. Abraham Metaplasticity: tuning synapses and networks for plasticity , 2008, Nature Reviews Neuroscience.

[2]  R. Yuste,et al.  The Logic of Inhibitory Connectivity in the Neocortex , 2013, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[3]  Massimo Scanziani,et al.  The contribution of synaptic location to inhibitory gain control in pyramidal cells , 2013, Physiological reports.

[4]  P. Castillo,et al.  Endocannabinoid Signaling and Synaptic Function , 2012, Neuron.

[5]  G. Mongillo,et al.  Inhibitory connectivity defines the realm of excitatory plasticity , 2018, Nature Neuroscience.

[6]  Keith B. Hengen,et al.  Firing Rate Homeostasis in Visual Cortex of Freely Behaving Rodents , 2013, Neuron.

[7]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[8]  Matthew C. Walker,et al.  Extrasynaptic GABAA Receptors: Form, Pharmacology, and Function , 2009, The Journal of Neuroscience.

[9]  Li I. Zhang,et al.  Synaptic Mechanisms for Bandwidth Tuning in Awake Mouse Primary Auditory Cortex. , 2018, Cerebral cortex.

[10]  K. Miller Understanding layer 4 of the cortical circuit: a model based on cat V1. , 2003, Cerebral cortex.

[11]  P. Castillo,et al.  Heterosynaptic LTD of Hippocampal GABAergic Synapses A Novel Role of Endocannabinoids in Regulating Excitability , 2003, Neuron.

[12]  Z. J. Huang,et al.  Transcriptional Architecture of Synaptic Communication Delineates GABAergic Neuron Identity , 2017, Cell.

[13]  P. Jonas,et al.  Dendritic Mechanisms Underlying Rapid Synaptic Activation of Fast-Spiking Hippocampal Interneurons , 2010, Science.

[14]  Concha Bielza,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[15]  J. Kauer,et al.  Opioids block long-term potentiation of inhibitory synapses , 2007, Nature.

[16]  Xiao-Jing Wang,et al.  Robust Spatial Working Memory through Homeostatic Synaptic Scaling in Heterogeneous Cortical Networks , 2003, Neuron.

[17]  K. Miller,et al.  A Theory of the Transition to Critical Period Plasticity: Inhibition Selectively Suppresses Spontaneous Activity , 2013, Neuron.

[18]  G. Fishell,et al.  Interneuron Types as Attractors and Controllers. , 2020, Annual review of neuroscience.

[19]  Damian L. Berger,et al.  Three cooperative mechanisms required for recovery after brain damage , 2019, Scientific Reports.

[20]  Michael Graupner,et al.  Synaptic Input Correlations Leading to Membrane Potential Decorrelation of Spontaneous Activity in Cortex , 2013, The Journal of Neuroscience.

[21]  D. Feldman,et al.  Whisker Deprivation Drives Two Phases of Inhibitory Synapse Weakening in Layer 4 of Rat Somatosensory Cortex , 2016, PloS one.

[22]  D. Linden,et al.  Polarity of Long-Term Synaptic Gain Change Is Related to Postsynaptic Spike Firing at a Cerebellar Inhibitory Synapse , 1998, Neuron.

[23]  C. Petersen,et al.  State-dependent cell-type-specific membrane potential dynamics and unitary synaptic inputs in awake mice , 2018, eLife.

[24]  L. Abbott,et al.  Synaptic plasticity: taming the beast , 2000, Nature Neuroscience.

[25]  André Longtin,et al.  Subtractive, divisive and non-monotonic gain control in feedforward nets linearized by noise and delays , 2014, Front. Comput. Neurosci..

[26]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[27]  B. R. Sastry,et al.  Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei. , 2000, Journal of neurophysiology.

[28]  P. Castillo,et al.  Long-Term Plasticity of Neurotransmitter Release: Emerging Mechanisms and Contributions to Brain Function and Disease. , 2018, Annual review of neuroscience.

[29]  H. Adesnik,et al.  Input normalization by global feedforward inhibition expands cortical dynamic range , 2009, Nature Neuroscience.

[30]  Uzay E. Emir,et al.  The Hippocampus and Neocortical Inhibitory Engrams Protect against Memory Interference , 2018, Neuron.

[31]  Sandra J. Kuhlman,et al.  A disinhibitory microcircuit initiates critical period plasticity in visual cortex , 2013, Nature.

[32]  Ivan Soltesz,et al.  Quantitative assessment of CA1 local circuits: Knowledge base for interneuron‐pyramidal cell connectivity , 2013, Hippocampus.

[33]  M. Scanziani,et al.  Equalizing Excitation-Inhibition Ratios across Visual Cortical Neurons , 2014, Nature.

[34]  Robert J. Morgan,et al.  Regulation of Fast-Spiking Basket Cell Synapses by the Chloride Channel ClC–2 , 2010, Nature Neuroscience.

[35]  E. M. Petrini,et al.  Synaptic recruitment of gephyrin regulates surface GABAA receptor dynamics for the expression of inhibitory LTP , 2014, Nature Communications.

[36]  Y. Komatsu,et al.  Long-term modification of inhibitory synaptic transmission in developing visual cortex. , 1993, Neuroreport.

[37]  Jens Hjerling-Leffler,et al.  Disentangling neural cell diversity using single-cell transcriptomics , 2016, Nature Neuroscience.

[38]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[39]  Alberto Bacci,et al.  Non-associative Potentiation of Perisomatic Inhibition Alters the Temporal Coding of Neocortical Layer 5 Pyramidal Neurons , 2014, PLoS biology.

[40]  Arianna Maffei,et al.  The Many Forms and Functions of Long Term Plasticity at GABAergic Synapses , 2011, Neural plasticity.

[41]  André Longtin,et al.  Differential effects of excitatory and inhibitory heterogeneity on the gain and asynchronous state of sparse cortical networks , 2014, Front. Comput. Neurosci..

[42]  B. Lu,et al.  BDNF and synaptic plasticity, cognitive function, and dysfunction. , 2014, Handbook of experimental pharmacology.

[43]  P. Somogyi,et al.  A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cells , 1983, Brain Research.

[44]  M. Kano Plasticity of inhibitory synapses in the brain: a possible memory mechanism that has been overlooked , 1995, Neuroscience Research.

[45]  M. Farrant,et al.  Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors , 2005, Nature Reviews Neuroscience.

[46]  A. Maffei Fifty shades of inhibition , 2017, Current Opinion in Neurobiology.

[47]  T. Hensch Critical period mechanisms in developing visual cortex. , 2005, Current topics in developmental biology.

[48]  D. Rusakov,et al.  Slow GABA Transient and Receptor Desensitization Shape Synaptic Responses Evoked by Hippocampal Neurogliaform Cells , 2010, The Journal of Neuroscience.

[49]  J. Bischofberger,et al.  Dendrite-targeting interneurons control synaptic NMDA-receptor activation via nonlinear α5-GABAA receptors , 2018, Nature Communications.

[50]  Richard H Scheuermann,et al.  Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type , 2017, Nature Neuroscience.

[51]  Arianna Maffei,et al.  Inhibitory Plasticity Dictates the Sign of Plasticity at Excitatory Synapses , 2014, The Journal of Neuroscience.

[52]  H. Markram,et al.  Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat , 2004, The Journal of physiology.

[53]  C. Wierenga Review for "The ins and outs of inhibitory synaptic plasticity: neuron types, molecular mechanisms and functional roles" , 2020 .

[54]  M. Capogna,et al.  Synaptic Plasticity, Engrams, and Network Oscillations in Amygdala Circuits for Storage and Retrieval of Emotional Memories , 2017, Neuron.

[55]  Antonio Pazienti,et al.  Modulation of Coordinated Activity across Cortical Layers by Plasticity of Inhibitory Synapses , 2020, Cell reports.

[56]  R. Miles,et al.  Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea‐pig in vitro. , 1990, The Journal of physiology.

[57]  C. Levelt,et al.  Visual Processing by Calretinin Expressing Inhibitory Neurons in Mouse Primary Visual Cortex , 2018, Scientific Reports.

[58]  Claudia Clopath,et al.  Inhibitory microcircuits for top-down plasticity of sensory representations , 2018, Nature Communications.

[59]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[60]  I. Soltesz,et al.  Granule Cells in the CA3 Area , 2010, The Journal of Neuroscience.

[61]  M. Higley,et al.  Preserving the balance: diverse forms of long-term GABAergic synaptic plasticity , 2019, Nature Reviews Neuroscience.

[62]  M. Woodin,et al.  Emerging Mechanisms Underlying Dynamics of GABAergic Synapses , 2017, The Journal of Neuroscience.

[63]  Judit K. Makara,et al.  Involvement of Nitric Oxide in Depolarization-Induced Suppression of Inhibition in Hippocampal Pyramidal Cells during Activation of Cholinergic Receptors , 2007, The Journal of Neuroscience.

[64]  Everton J. Agnes,et al.  Inhibitory Plasticity: Balance, Control, and Codependence. , 2017, Annual review of neuroscience.

[65]  Subhabrata Sanyal,et al.  Plasticity of local GABAergic interneurons drives olfactory habituation , 2011, Proceedings of the National Academy of Sciences.

[66]  Anne E. Takesian,et al.  Rescue of Inhibitory Synapse Strength following Developmental Hearing Loss , 2013, PloS one.

[67]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[68]  E. Levine,et al.  Role for Endogenous BDNF in Endocannabinoid-Mediated Long-Term Depression at Neocortical Inhibitory Synapses,, , 2015, eNeuro.

[69]  P. Castillo Presynaptic LTP and LTD of excitatory and inhibitory synapses. , 2012, Cold Spring Harbor perspectives in biology.

[70]  Juan Ahumada,et al.  Long‐term depression of inhibitory synaptic transmission induced by spike‐timing dependent plasticity requires coactivation of endocannabinoid and muscarinic receptors , 2013, Hippocampus.

[71]  D. Feldman,et al.  Parallel Regulation of Feedforward Inhibition and Excitation during Whisker Map Plasticity , 2011, Neuron.

[72]  K. Rockland,et al.  Expression of COUP-TFII Nuclear Receptor in Restricted GABAergic Neuronal Populations in the Adult Rat Hippocampus , 2010, The Journal of Neuroscience.

[73]  S. Tomita,et al.  Assembly rules for GABAA receptor complexes in the brain , 2017, eLife.

[74]  D. Lovinger,et al.  Endocannabinoid‐dependent plasticity at GABAergic and glutamatergic synapses in the striatum is regulated by synaptic activity , 2009, The European journal of neuroscience.

[75]  S. Nelson,et al.  Strength through Diversity , 2008, Neuron.

[76]  Thomas J Younts,et al.  Endogenous cannabinoid signaling at inhibitory interneurons , 2014, Current Opinion in Neurobiology.

[77]  M. Dell'Acqua,et al.  Nanoscale Subsynaptic Domains Underlie the Organization of the Inhibitory Synapse. , 2019, Cell reports.

[78]  Vivien Chevaleyre,et al.  Delta-Opioid Receptors Mediate Unique Plasticity onto Parvalbumin-Expressing Interneurons in Area CA2 of the Hippocampus , 2013, The Journal of Neuroscience.

[79]  M. Carandini,et al.  Parvalbumin-Expressing Interneurons Linearly Transform Cortical Responses to Visual Stimuli , 2012, Neuron.

[80]  Jason C. Wester,et al.  Hippocampal GABAergic Inhibitory Interneurons. , 2017, Physiological reviews.

[81]  Michael J. Higley,et al.  Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition , 2017, Neuron.

[82]  R. Nicoll,et al.  Long-Term Potentiation: From CaMKII to AMPA Receptor Trafficking. , 2016, Annual review of physiology.

[83]  M. Sahani,et al.  Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex , 2018, Nature Neuroscience.

[84]  D. Rusakov,et al.  GABAB Receptor Modulation of Feedforward Inhibition through Hippocampal Neurogliaform Cells , 2008, The Journal of Neuroscience.

[85]  Frances S. Chance,et al.  Erratum: Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex , 2013, Nature Neuroscience.

[86]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[87]  Timothy E. J. Behrens,et al.  Inhibitory engrams in perception and memory , 2017, Proceedings of the National Academy of Sciences.

[88]  Dheeraj S. Roy,et al.  Memory engram storage and retrieval , 2015, Current Opinion in Neurobiology.

[89]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[90]  G Buzsáki,et al.  Functions for interneuronal nets in the hippocampus. , 1997, Canadian journal of physiology and pharmacology.

[91]  M. Poo,et al.  Coincident Pre- and Postsynaptic Activity Modifies GABAergic Synapses by Postsynaptic Changes in Cl− Transporter Activity , 2003, Neuron.

[92]  N. Hájos,et al.  Synaptic Organization of Perisomatic GABAergic Inputs onto the Principal Cells of the Mouse Basolateral Amygdala , 2016, Front. Neuroanat..

[93]  Brent Doiron,et al.  Circuit Models of Low-Dimensional Shared Variability in Cortical Networks , 2019, Neuron.

[94]  Henning Sprekeler,et al.  Inhibitory synaptic plasticity: spike timing-dependence and putative network function , 2013, Front. Neural Circuits.

[95]  Nicole Calakos,et al.  Presynaptic long-term plasticity , 2013, Front. Synaptic Neurosci..

[96]  Daniel E. Feldman,et al.  Rapid homeostasis by disinhibition during whisker map plasticity , 2014, Proceedings of the National Academy of Sciences.

[97]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[98]  Jessica A. Cardin,et al.  Cellular Mechanisms Underlying Stimulus-Dependent Gain Modulation in Primary Visual Cortex Neurons In Vivo , 2008, Neuron.

[99]  Christoph E. Schreiner,et al.  Inhibitory Actions Unified by Network Integration , 2015, Neuron.

[100]  Y. Ben-Ari,et al.  Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance , 2002, Trends in Neurosciences.

[101]  D. Kullmann,et al.  Plasticity of Inhibition , 2012, Neuron.

[102]  B. Leitch,et al.  The impact of silencing feed-forward parvalbumin-expressing inhibitory interneurons in the cortico-thalamocortical network on seizure generation and behaviour , 2019, Neurobiology of Disease.

[103]  Brent Doiron,et al.  Attentional modulation of neuronal variability in circuit models of cortex , 2017, eLife.

[104]  Karl Deisseroth,et al.  Activation of Specific Interneurons Improves V1 Feature Selectivity and Visual Perception , 2012, Nature.

[105]  Li I. Zhang,et al.  Strengthening of Direction Selectivity by Broadly Tuned and Spatiotemporally Slightly Offset Inhibition in Mouse Visual Cortex. , 2015, Cerebral cortex.

[106]  C. Schreiner,et al.  A synaptic memory trace for cortical receptive field plasticity , 2007, Nature.

[107]  Marco Capogna,et al.  Firing of Hippocampal Neurogliaform Cells Induces Suppression of Synaptic Inhibition , 2014, The Journal of Neuroscience.

[108]  R. Silver Neuronal arithmetic , 2010, Nature Reviews Neuroscience.

[109]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[110]  Mark C. W. van Rossum,et al.  Activity Deprivation Reduces Miniature IPSC Amplitude by Decreasing the Number of Postsynaptic GABAA Receptors Clustered at Neocortical Synapses , 2002, The Journal of Neuroscience.

[111]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[112]  D. Lovinger,et al.  Presynaptic long-term depression mediated by Gi/o-coupled receptors , 2014, Trends in Neurosciences.

[113]  R. Weinberg,et al.  Identification of an elaborate complex mediating postsynaptic inhibition , 2016, Science.

[114]  Z. Nusser,et al.  Similar GABAA receptor subunit composition in somatic and axon initial segment synapses of hippocampal pyramidal cells , 2016, eLife.

[115]  Alberto Diaspro,et al.  Nanoscale Molecular Reorganization of the Inhibitory Postsynaptic Density Is a Determinant of GABAergic Synaptic Potentiation , 2017, The Journal of Neuroscience.

[116]  P. Jonas,et al.  A supercritical density of fast Na+ channels ensures rapid propagation of action potentials in GABAergic interneuron axons , 2013, Nature Neuroscience.

[117]  C. Schreiner,et al.  A Critical Role of Inhibition in Temporal Processing Maturation in the Primary Auditory Cortex , 2018, Cerebral cortex.

[118]  S. Nelson,et al.  Hebb and homeostasis in neuronal plasticity , 2000, Current Opinion in Neurobiology.

[119]  Anne E. Takesian,et al.  Age-dependent effect of hearing loss on cortical inhibitory synapse function. , 2012, Journal of neurophysiology.

[120]  Kevin Fox,et al.  Time-course and mechanisms of homeostatic plasticity in layers 2/3 and 5 of the barrel cortex , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[121]  P. Castillo,et al.  CA1 Pyramidal Cell Theta-Burst Firing Triggers Endocannabinoid-Mediated Long-Term Depression at Both Somatic and Dendritic Inhibitory Synapses , 2013, The Journal of Neuroscience.

[122]  M. Greenberg,et al.  A Biological Function for the Neuronal Activity-Dependent Component of Bdnf Transcription in the Development of Cortical Inhibition , 2008, Neuron.

[123]  Elke Edelmann,et al.  Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity , 2014, Neuropharmacology.

[124]  C. Sotelo,et al.  Neuronal Activity and Brain-Derived Neurotrophic Factor Regulate the Density of Inhibitory Synapses in Organotypic Slice Cultures of Postnatal Hippocampus , 2000, The Journal of Neuroscience.

[125]  R. Pearce,et al.  GABAA,slow: causes and consequences , 2011, Trends in Neurosciences.

[126]  Simon Chamberland,et al.  Inhibitory control of hippocampal inhibitory neurons , 2012, Front. Neurosci..

[127]  S. Nelson,et al.  Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation , 2004, Nature Neuroscience.

[128]  Johannes J. Letzkus,et al.  A disinhibitory microcircuit for associative fear learning in the auditory cortex , 2011, Nature.

[129]  P. Jonas,et al.  How the 'slow' Ca2+ buffer parvalbumin affects transmitter release in nanodomain-coupling regimes , 2011, Nature Neuroscience.

[130]  Johannes J. Letzkus,et al.  Learning-Related Plasticity in Dendrite-Targeting Layer 1 Interneurons , 2018, Neuron.

[131]  M. Fagiolini,et al.  Optimization of Somatic Inhibition at Critical Period Onset in Mouse Visual Cortex , 2007, Neuron.

[132]  P. Castillo,et al.  Endocannabinoid signaling and long-term synaptic plasticity. , 2009, Annual review of physiology.

[133]  Marco Idiart,et al.  A Second Function of Gamma Frequency Oscillations: An E%-Max Winner-Take-All Mechanism Selects Which Cells Fire , 2009, The Journal of Neuroscience.

[134]  Nathaniel J. Miska,et al.  Sensory experience inversely regulates feedforward and feedback excitation-inhibition ratio in rodent visual cortex , 2018, eLife.

[135]  R. Nicoll,et al.  Synaptic plasticity and dynamic modulation of the postsynaptic membrane , 2000, Nature Neuroscience.

[136]  X. Tie,et al.  Layer‐specific endocannabinoid‐mediated long‐term depression of GABAergic neurotransmission onto principal neurons in mouse visual cortex , 2015, The European journal of neuroscience.

[137]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[138]  V. Kotak,et al.  Developmental plasticity of auditory cortical inhibitory synapses , 2011, Hearing Research.

[139]  A. Triller,et al.  Inhibitory Receptor Diffusion Dynamics , 2019, Front. Mol. Neurosci..

[140]  K. Zaghloul,et al.  Activity-dependent tuning of intrinsic excitability in mouse and human neurogliaform cells , 2020, bioRxiv.

[141]  Pedro Grandes,et al.  Dopaminergic Modulation of Endocannabinoid-Mediated Plasticity at GABAergic Synapses in the Prefrontal Cortex , 2010, The Journal of Neuroscience.

[142]  M. G. Faulkner,et al.  Engram cells retain memory under retrograde amnesia , 2015, Science.

[143]  T. Fuchs,et al.  GABAA Receptor Trafficking-Mediated Plasticity of Inhibitory Synapses , 2011, Neuron.

[144]  R. Clem,et al.  Multimodal and Site-Specific Plasticity of Amygdala Parvalbumin Interneurons after Fear Learning , 2016, Neuron.

[145]  D. Copenhagen,et al.  Brain-Derived Neurotrophic Factor and TrkB Modulate Visual Experience-Dependent Refinement of Neuronal Pathways in Retina , 2007, The Journal of Neuroscience.

[146]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[147]  Christopher I. Moore,et al.  Human Neuroscience , 2022 .

[148]  R. Nicoll,et al.  Somatostatin and parvalbumin inhibitory synapses onto hippocampal pyramidal neurons are regulated by distinct mechanisms , 2018, Proceedings of the National Academy of Sciences.

[149]  P. Castillo,et al.  Endocannabinoid-Mediated Metaplasticity in the Hippocampus , 2004, Neuron.

[150]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[151]  Peter Jonas,et al.  Differential dependence of phasic transmitter release on synaptotagmin 1 at GABAergic and glutamatergic hippocampal synapses , 2008, Proceedings of the National Academy of Sciences.

[152]  Tomonori Takeuchi,et al.  The synaptic plasticity and memory hypothesis: encoding, storage and persistence , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[153]  P. Somogyi,et al.  Fast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neurone in the cat visual cortex. , 1997, The Journal of physiology.

[154]  D. Debanne,et al.  Enhanced Intrinsic Excitability in Basket Cells Maintains Excitatory-Inhibitory Balance in Hippocampal Circuits , 2013, Neuron.

[155]  Z. Nusser,et al.  Author response: Similar GABAA receptor subunit composition in somatic and axon initial segment synapses of hippocampal pyramidal cells , 2016 .

[156]  Robert C. Froemke,et al.  Inhibitory and Excitatory Spike-Timing-Dependent Plasticity in the Auditory Cortex , 2015, Neuron.

[157]  Jessica A. Cardin,et al.  Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex , 2007, The Journal of Neuroscience.

[158]  G. Mongillo,et al.  Intrinsic volatility of synaptic connections — a challenge to the synaptic trace theory of memory , 2017, Current Opinion in Neurobiology.

[159]  S. Nelson,et al.  Potentiation of cortical inhibition by visual deprivation , 2006, Nature.

[160]  L.F. Abbott,et al.  Gating Multiple Signals through Detailed Balance of Excitation and Inhibition in Spiking Networks , 2009, Nature Neuroscience.

[161]  D. Muller,et al.  Regulation of GABAergic synapse formation and plasticity by GSK3β-dependent phosphorylation of gephyrin , 2010, Proceedings of the National Academy of Sciences.

[162]  Henning Sprekeler,et al.  Functional consequences of inhibitory plasticity: homeostasis, the excitation-inhibition balance and beyond , 2017, Current Opinion in Neurobiology.

[163]  Csaba Varga,et al.  Regulation of cortical microcircuits by unitary GABAergic volume transmission , 2009, Nature.

[164]  R. Lamprecht,et al.  Persistent CaMKII Activation Mediates Learning-Induced Long-Lasting Enhancement of Synaptic Inhibition , 2015, The Journal of Neuroscience.

[165]  T. Freund,et al.  Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus , 1999, The Journal of Neuroscience.

[166]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[167]  Huizhong W Tao,et al.  Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex. , 2015, Cerebral cortex.

[168]  Yumiko Yoshimura,et al.  State-Dependent Bidirectional Modification of Somatic Inhibition in Neocortical Pyramidal Cells , 2008, Neuron.

[169]  G. Turrigiano,et al.  Synaptic and Intrinsic Homeostatic Mechanisms Cooperate to Increase L2/3 Pyramidal Neuron Excitability during a Late Phase of Critical Period Plasticity , 2013, The Journal of Neuroscience.

[170]  Clara S. Tang,et al.  Persistent barrage firing in cortical interneurons can be induced in vivo and may be important for the suppression of epileptiform activity , 2014, Front. Cell. Neurosci..

[171]  R. Froemke Plasticity of cortical excitatory-inhibitory balance. , 2015, Annual review of neuroscience.

[172]  J. Rothwell,et al.  Noninvasive Stimulation of the Human Brain: Activation of Multiple Cortical Circuits , 2018, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[173]  J. Bains,et al.  Changing the tune: plasticity and adaptation of retrograde signals , 2013, Trends in Neurosciences.

[174]  T. Tsumoto,et al.  The Maturation of GABAergic Transmission in Visual Cortex Requires Endocannabinoid-Mediated LTD of Inhibitory Inputs during a Critical Period , 2010, Neuron.

[175]  Paul W. Frankland,et al.  Competition between engrams influences fear memory formation and recall , 2016, Science.

[176]  Majid H Mohajerani,et al.  At Immature Mossy-Fiber–CA3 Synapses, Correlated Presynaptic and Postsynaptic Activity Persistently Enhances GABA Release and Network Excitability via BDNF and cAMP-Dependent PKA , 2009, The Journal of Neuroscience.

[177]  Matthew E. Larkum,et al.  The GABAB1b Isoform Mediates Long-Lasting Inhibition of Dendritic Ca2+ Spikes in Layer 5 Somatosensory Pyramidal Neurons , 2006, Neuron.

[178]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[179]  Xiao-Jing Wang,et al.  Speed-accuracy tradeoff by a control signal with balanced excitation and inhibition. , 2015, Journal of neurophysiology.

[180]  M. Avoli Inhibition, oscillations and focal seizures: An overview inspired by some historical notes , 2019, Neurobiology of Disease.

[181]  J. Winterer,et al.  Deep Survey of GABAergic Interneurons: Emerging Insights From Gene-Isoform Transcriptomics , 2019, Front. Mol. Neurosci..

[182]  G. Fishell,et al.  Interneuron cell types are fit to function , 2014, Nature.

[183]  M. Dacher,et al.  Morphine-induced modulation of LTD at GABAergic synapses in the ventral tegmental area , 2011, Neuropharmacology.

[184]  B. Lu,et al.  A key mechanism underlying sensory experience-dependent maturation of neocortical GABAergic circuits in vivo , 2011, Proceedings of the National Academy of Sciences.

[185]  Marco Capogna,et al.  Neurogliaform Neurons Form a Novel Inhibitory Network in the Hippocampal CA1 Area , 2005, The Journal of Neuroscience.

[186]  P. Somogyi,et al.  Unitary IPSPs evoked by interneurons at the stratum radiatum‐stratum lacunosum‐moleculare border in the CA1 area of the rat hippocampus in vitro , 1998, The Journal of physiology.

[187]  Yongling Zhu,et al.  Hippocampal Metaplasticity Is Required for the Formation of Temporal Associative Memories , 2014, The Journal of Neuroscience.

[188]  W. Zieglgänsberger,et al.  The endogenous cannabinoid system controls extinction of aversive memories , 2002, Nature.

[189]  Michele Pignatelli,et al.  Engram cells retain memory under retrograde amnesia , 2015, Science.

[190]  Megan R. Carey,et al.  Activity-Dependent Regulation of Synapses by Retrograde Messengers , 2009, Neuron.

[191]  J. Bains,et al.  Endocannabinoids Gate State-Dependent Plasticity of Synaptic Inhibition in Feeding Circuits , 2011, Neuron.

[192]  Pico Caroni,et al.  Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning , 2013, Nature.

[193]  Henning Sprekeler,et al.  Inhibitory Plasticity Balances Excitation and Inhibition in Sensory Pathways and Memory Networks , 2011, Science.

[194]  Eric R Kandel,et al.  Calcineurin-Mediated LTD of GABAergic Inhibition Underlies the Increased Excitability of CA1 Neurons Associated with LTP , 2000, Neuron.

[195]  U. Bhalla,et al.  Precise excitation-inhibition balance controls gain and timing in the hippocampus , 2017, bioRxiv.

[196]  Beat Lutz,et al.  Circuitry for Associative Plasticity in the Amygdala Involves Endocannabinoid Signaling , 2004, The Journal of Neuroscience.

[197]  Masahiko Watanabe,et al.  Endocannabinoid-mediated control of synaptic transmission. , 2009, Physiological reviews.

[198]  Christoph E. Schreiner,et al.  Developmental sensory experience balances cortical excitation and inhibition , 2010, Nature.

[199]  Thomas Klausberger,et al.  Distinct Dendritic Arborization and In Vivo Firing Patterns of Parvalbumin-Expressing Basket Cells in the Hippocampal Area CA3 , 2013, The Journal of Neuroscience.

[200]  Y. Yoshimura,et al.  Brain-derived neurotrophic factor-mediated retrograde signaling required for the induction of long-term potentiation at inhibitory synapses of visual cortical pyramidal neurons , 2008, Neuroscience Research.

[201]  Chiayu Q. Chiu,et al.  Long-term plasticity at inhibitory synapses , 2011, Current Opinion in Neurobiology.

[202]  Vincent Villette,et al.  Connectivity and network state-dependent recruitment of long-range VIP-GABAergic neurons in the mouse hippocampus , 2018, Nature Communications.

[203]  H. Sompolinsky,et al.  Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity , 1996, Science.

[204]  Haim Sompolinsky,et al.  Balanced excitation and inhibition are required for high-capacity, noise-robust neuronal selectivity , 2017, Proceedings of the National Academy of Sciences.

[205]  F. Saraga,et al.  Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus , 2008, Neuroscience.

[206]  Stefan Hefft,et al.  Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse , 2005, Nature Neuroscience.

[207]  T. Tsumoto,et al.  Cell Type-Specific, Presynaptic LTP of Inhibitory Synapses on Fast-Spiking GABAergic Neurons in the Mouse Visual Cortex , 2012, The Journal of Neuroscience.

[208]  K. Miller,et al.  Opponent Inhibition A Developmental Model of Layer 4 of the Neocortical Circuit , 2002, Neuron.

[209]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[210]  A. Kirkwood,et al.  Daily Oscillation of the Excitation-Inhibition Balance in Visual Cortical Circuits , 2019, Neuron.

[211]  Henning Sprekeler,et al.  Amplifying the redistribution of somato-dendritic inhibition by the interplay of three interneuron types , 2018, bioRxiv.

[212]  Y. Ben-Ari,et al.  Endogenous Neurotrophins Are Required for the Induction of GABAergic Long-Term Potentiation in the Neonatal Rat Hippocampus , 2005, The Journal of Neuroscience.

[213]  S. Tomita Molecular constituents and localization of the ionotropic GABA receptor complex in vivo , 2019, Current Opinion in Neurobiology.

[214]  T. Hensch Critical period plasticity in local cortical circuits , 2005, Nature Reviews Neuroscience.

[215]  P. Castillo,et al.  Interneuron activity controls endocannabinoid-mediated presynaptic plasticity through calcineurin , 2008, Proceedings of the National Academy of Sciences.

[216]  Hey-Kyoung Lee,et al.  Experience-dependent homeostatic synaptic plasticity in neocortex , 2014, Neuropharmacology.

[217]  Mohit H. Adhikari,et al.  Brain State Dependent Postinhibitory Rebound in Entorhinal Cortex Interneurons , 2012, The Journal of Neuroscience.

[218]  J. Deuchars,et al.  Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat neocortex. , 1996, The Journal of physiology.

[219]  S. Moss,et al.  The dynamic modulation of GABA(A) receptor trafficking and its role in regulating the plasticity of inhibitory synapses. , 2011, Physiological reviews.

[220]  M. Wehr,et al.  Gap encoding by parvalbumin-expressing interneurons in auditory cortex. , 2018, Journal of neurophysiology.

[221]  R. Tremblay,et al.  GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits , 2016, Neuron.

[222]  E. M. Petrini,et al.  Tuning GABAergic Inhibition: Gephyrin Molecular Organization and Functions , 2020, Neuroscience.

[223]  A. Maffei,et al.  Layer-specific Developmental Changes in Excitation and Inhibition in Rat Primary Visual Cortex , 2017, eNeuro.

[224]  Daniel E Feldman,et al.  Rapid Disinhibition by Adjustment of PV Intrinsic Excitability during Whisker Map Plasticity in Mouse S1 , 2018, The Journal of Neuroscience.

[225]  M. Frotscher,et al.  Nanodomain Coupling between Ca2+ Channels and Ca2+ Sensors Promotes Fast and Efficient Transmitter Release at a Cortical GABAergic Synapse , 2008, Neuron.

[226]  M. Cohen,et al.  Author response: Attentional modulation of neuronal variability in circuit models of cortex , 2017 .

[227]  Jozsef Csicsvari,et al.  Ivy Cells: A Population of Nitric-Oxide-Producing, Slow-Spiking GABAergic Neurons and Their Involvement in Hippocampal Network Activity , 2008, Neuron.

[228]  K. Ohki,et al.  Cell Type Specific Representation of Vibro-tactile Stimuli in the Mouse Primary Somatosensory Cortex , 2018, Front. Neural Circuits.

[229]  N. Spruston,et al.  Slow integration leads to persistent action potential firing in distal axons of coupled interneurons , 2010, Nature neuroscience.

[230]  P. Somogyi,et al.  Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons , 1995, Nature.

[231]  T. Freund,et al.  Role of endogenous cannabinoids in synaptic signaling. , 2003, Physiological reviews.

[232]  C. Holmgren,et al.  Coincident Spiking Activity Induces Long-Term Changes in Inhibition of Neocortical Pyramidal Cells , 2001, The Journal of Neuroscience.

[233]  P. Jonas,et al.  Theta-Gamma-Modulated Synaptic Currents in Hippocampal Granule Cells In Vivo Define a Mechanism for Network Oscillations , 2013, Neuron.

[234]  Z Josh Huang,et al.  The diversity of GABAergic neurons and neural communication elements , 2019, Nature Reviews Neuroscience.

[235]  R. Schneggenburger,et al.  Parvalbumin-Interneuron Output Synapses Show Spike-Timing-Dependent Plasticity that Contributes to Auditory Map Remodeling , 2018, Neuron.

[236]  T. Harkany,et al.  Selective Silencing of Hippocampal Parvalbumin Interneurons Induces Development of Recurrent Spontaneous Limbic Seizures in Mice , 2017, The Journal of Neuroscience.

[237]  T. Südhof,et al.  Endocannabinoid-Mediated Long-Term Plasticity Requires cAMP/PKA Signaling and RIM1α , 2007, Neuron.

[238]  Michael Wehr,et al.  Parvalbumin-Expressing Inhibitory Interneurons in Auditory Cortex Are Well-Tuned for Frequency , 2013, The Journal of Neuroscience.