Possibility for strong northern hemisphere high-latitude cooling under negative emissions

[1]  Ipcc Global Warming of 1.5°C , 2022 .

[2]  J. Mignot,et al.  On the risk of abrupt changes in the North Atlantic subpolar gyre in CMIP6 models , 2021, Annals of the New York Academy of Sciences.

[3]  J. von Hardenberg,et al.  Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response , 2021, Nature Communications.

[4]  V. Brovkin,et al.  Compatible Fossil Fuel CO2 Emissions in the CMIP6 Earth System Models’ Historical and Shared Socioeconomic Pathway Experiments of the Twenty-First Century , 2021, Journal of Climate.

[5]  D. Little,et al.  A 20-year retrospective review of global aquaculture , 2021, Nature.

[6]  S. Westermann,et al.  Population living on permafrost in the Arctic , 2021 .

[7]  C. Heinze,et al.  Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations , 2020 .

[8]  Atul K. Jain,et al.  Global Carbon Budget 2020 , 2020, Earth System Science Data.

[9]  R. Steneck,et al.  Keystone predators govern the pathway and pace of climate impacts in a subarctic marine ecosystem , 2020, Science.

[10]  T. Ziehn,et al.  The Australian Earth System Model: ACCESS-ESM1.5 , 2020 .

[11]  S. Malyshev,et al.  The GFDL Earth System Model Version 4.1 (GFDL‐ESM 4.1): Overall Coupled Model Description and Simulation Characteristics , 2020, Journal of Advances in Modeling Earth Systems.

[12]  S. Bony,et al.  Presentation and Evaluation of the IPSL‐CM6A‐LR Climate Model , 2020, Journal of Advances in Modeling Earth Systems.

[13]  Wei Cheng,et al.  CMIP6 Models Predict Significant 21st Century Decline of the Atlantic Meridional Overturning Circulation , 2020, Geophysical Research Letters.

[14]  Wei Cheng,et al.  Role of AMOC in Transient Climate Response to Greenhouse Gas Forcing in Two Coupled Models , 2020, Journal of Climate.

[15]  J. Fyfe,et al.  Ongoing AMOC and related sea-level and temperature changes after achieving the Paris targets , 2020, Nature Climate Change.

[16]  F. Asche,et al.  Production cost and competitiveness in major salmon farming countries 2003–2018 , 2020 .

[17]  A. Ito,et al.  Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks , 2020, Geoscientific Model Development.

[18]  Christopher J. Smith,et al.  Past warming trend constrains future warming in CMIP6 models , 2020, Science Advances.

[19]  Matthew R. Baker,et al.  Evidence suggests potential transformation of the Pacific Arctic ecosystem is underway , 2020, Nature Climate Change.

[20]  W. G. Strand,et al.  The Community Earth System Model Version 2 (CESM2) , 2020, Journal of Advances in Modeling Earth Systems.

[21]  V. Brovkin,et al.  Is there warming in the pipeline? A multi-model analysis of the zero emission commitment from CO2 , 2020 .

[22]  C. Heinze,et al.  Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2) , 2020, Geoscientific Model Development.

[23]  J. Rogelj,et al.  Path Independence of Carbon Budgets When Meeting a Stringent Global Mean Temperature Target After an Overshoot , 2019, Earth's Future.

[24]  R. Waldman,et al.  Evaluation of CNRM Earth System Model, CNRM‐ESM2‐1: Role of Earth System Processes in Present‐Day and Future Climate , 2019, Journal of Advances in Modeling Earth Systems.

[25]  A. J. Hewitt,et al.  UKESM1: Description and Evaluation of the U.K. Earth System Model , 2019, Journal of Advances in Modeling Earth Systems.

[26]  N. Gillett,et al.  The Canadian Earth System Model version 5 (CanESM5.0.3) , 2019, Geoscientific Model Development.

[27]  J. Rogelj,et al.  The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions , 2019, Geoscientific Model Development.

[28]  H. Tsujino,et al.  The Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0: Description and Basic Evaluation of the Physical Component , 2019, Journal of the Meteorological Society of Japan. Ser. II.

[29]  D. Lawrence,et al.  The Response of Permafrost and High‐Latitude Ecosystems Under Large‐Scale Stratospheric Aerosol Injection and Its Termination , 2019, Earth's Future.

[30]  N. Shiklomanov,et al.  Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost , 2019, Environmental Research Letters.

[31]  Jan Hjort,et al.  Degrading permafrost puts Arctic infrastructure at risk by mid-century , 2018, Nature Communications.

[32]  P. Cox,et al.  Carbon budgets for 1.5 and 2 °C targets lowered by natural wetland and permafrost feedbacks , 2018, Nature Geoscience.

[33]  David P. Keller,et al.  The Effects of Carbon Dioxide Removal on the Carbon Cycle , 2018, Current Climate Change Reports.

[34]  J. Schwinger,et al.  Ocean Carbon Cycle Feedbacks Under Negative Emissions , 2018 .

[35]  William F. Lamb,et al.  Negative emissions—Part 2: Costs, potentials and side effects , 2018 .

[36]  David P. Keller,et al.  The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6 , 2018 .

[37]  Oliver Geden,et al.  Define limits for temperature overshoot targets , 2017, Nature Geoscience.

[38]  S. Levin,et al.  The growth of finfish in global open-ocean aquaculture under climate change , 2017, Proceedings of the Royal Society B: Biological Sciences.

[39]  S. Xie,et al.  Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate , 2017, Science Advances.

[40]  Paul Chinowsky,et al.  Climate change damages to Alaska public infrastructure and the economics of proactive adaptation , 2016, Proceedings of the National Academy of Sciences.

[41]  A. Abe‐Ouchi,et al.  Fate of the Atlantic Meridional Overturning Circulation: Strong decline under continued warming and Greenland melting , 2016 .

[42]  Brian C. O'Neill,et al.  The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 , 2016 .

[43]  R. Newton,et al.  White Arctic vs. Blue Arctic: A case study of diverging stakeholder responses to environmental change , 2016 .

[44]  Benjamin J. Saunders,et al.  Climate-driven regime shift of a temperate marine ecosystem , 2016, Science.

[45]  R. Knutti,et al.  Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO2 forcings , 2015 .

[46]  S. Drijfhout Competition between global warming and an abrupt collapse of the AMOC in Earth’s energy imbalance , 2015, Scientific Reports.

[47]  J. Lowe,et al.  The reversibility of CO2 induced climate change , 2015, Climate Dynamics.

[48]  S. Griffies,et al.  Has coarse ocean resolution biased simulations of transient climate sensitivity? , 2014 .

[49]  Laurence C. Smith,et al.  New Trans-Arctic shipping routes navigable by midcentury , 2013, Proceedings of the National Academy of Sciences.

[50]  Akash R. Sastri,et al.  Current state and trends in Canadian Arctic marine ecosystems: I. Primary production , 2012, Climatic Change.

[51]  O. Boucher,et al.  Reversibility in an Earth System model in response to CO2 concentration changes , 2012 .

[52]  L. Jackson,et al.  Extended warming of the northern high latitudes due to an overshoot of the Atlantic meridional overturning circulation , 2011 .

[53]  Paul J. Valdes,et al.  Built for stability , 2011 .

[54]  B. Hurk,et al.  Response of the Western European climate to a collapse of the thermohaline circulation , 2010 .

[55]  Janet K. Pitman,et al.  Assessment of Undiscovered Oil and Gas in the Arctic , 2009, Science.

[56]  Ian Stirling,et al.  Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. , 2008, Ecological applications : a publication of the Ecological Society of America.

[57]  Richard A. Wood,et al.  Global Climatic Impacts of a Collapse of the Atlantic Thermohaline Circulation , 2002 .

[58]  J. Debernard,et al.  Poleward shifts in marine fisheries under Arctic warming , 2021, Environmental Research Letters.

[59]  B. Evengård,et al.  The New Arctic , 2015 .