Mitochondrial double-stranded RNA triggers induction of the antiviral DNA deaminase APOBEC3A and nuclear DNA damage

[1]  B. Semler,et al.  APOBEC3B drives PKR-mediated translation shutdown and protects stress granules in response to viral infection , 2023, Nature Communications.

[2]  W. Brown,et al.  An immunogenic model of KRAS-mutant lung cancer enables evaluation of targeted therapy and immunotherapy combinations. , 2022, Cancer research.

[3]  Erik N. Bergstrom,et al.  Mechanisms of APOBEC3 mutagenesis in human cancer cells , 2022, Nature.

[4]  Chun-long Chen,et al.  Prospectively defined patterns of APOBEC3A mutagenesis are prevalent in human cancers , 2022, Cell reports.

[5]  Simak Ali,et al.  Induction of APOBEC3-mediated genomic damage in urothelium implicates BK polyomavirus (BKPyV) as a hit-and-run driver for bladder cancer , 2022, Oncogene.

[6]  Erik N. Bergstrom,et al.  Mapping clustered mutations in cancer reveals APOBEC3 mutagenesis of ecDNA , 2022, Nature.

[7]  M. Capobianchi,et al.  INMI1 Zika Virus NS4B Antagonizes the Interferon Signaling by Suppressing STAT1 Phosphorylation , 2021, Viruses.

[8]  B. Semler,et al.  Genotoxic stress and viral infection induce transient expression of APOBEC3A and pro-inflammatory genes through two distinct pathways , 2021, Nature Communications.

[9]  R. Chahwan,et al.  APOBECs orchestrate genomic and epigenomic editing across health and disease. , 2021, Trends in genetics : TIG.

[10]  J. Witteveldt,et al.  Sensing of transposable elements by the antiviral innate immune system , 2021, RNA.

[11]  John Karijolich,et al.  TDP-43 prevents endogenous RNAs from triggering a lethal RIG-I-dependent interferon response , 2021, Cell reports.

[12]  M. Lawrence,et al.  An extended APOBEC3A mutation signature in cancer , 2021, Nature Communications.

[13]  G. Ippolito,et al.  Zika virus NS2A inhibits interferon signaling by degradation of STAT1 and STAT2 , 2021, Virulence.

[14]  Christopher J. Tonkin,et al.  TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS , 2020, Cell.

[15]  J. Martens,et al.  Characterization of the mechanism by which the RB/E2F pathway controls expression of the cancer genomic DNA deaminase APOBEC3B , 2020, eLife.

[16]  A. Nussenzweig,et al.  ATR inhibition potentiates ionizing radiation‐induced interferon response via cytosolic nucleic acid‐sensing pathways , 2020, The EMBO journal.

[17]  Fangyuan Hu,et al.  Mitochondrial DNA drives noncanonical inflammation activation via cGAS–STING signaling pathway in retinal microvascular endothelial cells , 2020, Cell communication and signaling : CCS.

[18]  D. Largaespada,et al.  APOBEC3A catalyzes mutation and drives carcinogenesis in vivo , 2019, bioRxiv.

[19]  A. Dhir,et al.  Defects of mitochondrial RNA turnover lead to the accumulation of double-stranded RNA in vivo , 2019, PLoS genetics.

[20]  M. Stratton,et al.  Characterizing Mutational Signatures in Human Cancer Cell Lines Reveals Episodic APOBEC Mutagenesis , 2019, Cell.

[21]  M. Carpenter,et al.  A lentivirus-based system for Cas9/gRNA expression and subsequent removal by Cre-mediated recombination. , 2019, Methods.

[22]  Lela Lackey,et al.  A Rabbit Monoclonal Antibody against the Antiviral and Cancer Genomic DNA Mutating Enzyme APOBEC3B , 2019, bioRxiv.

[23]  Clémentine Dressaire,et al.  PNPase is involved in the coordination of mRNA degradation and expression in stationary phase cells of Escherichia coli , 2018, BMC Genomics.

[24]  A. Bhagwat,et al.  A Tumor-Promoting Phorbol Ester Causes a Large Increase in APOBEC3A Expression and a Moderate Increase in APOBEC3B Expression in a Normal Human Keratinocyte Cell Line without Increasing Genomic Uracils , 2018, Molecular and Cellular Biology.

[25]  J. Greenblatt,et al.  Epstein-Barr virus BORF2 inhibits cellular APOBEC3B to preserve viral genome integrity , 2018, Nature Microbiology.

[26]  A. Munnich,et al.  Mitochondrial double-stranded RNA triggers antiviral signalling in humans , 2018, Nature.

[27]  Ville Mustonen,et al.  The repertoire of mutational signatures in human cancer , 2018, Nature.

[28]  K. Pyrć,et al.  APOBEC3-mediated restriction of RNA virus replication , 2018, Scientific Reports.

[29]  M. Spehlmann,et al.  Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy , 2017, Human molecular genetics.

[30]  D. Wolf,et al.  APOBEC3A Is Upregulated by Human Cytomegalovirus (HCMV) in the Maternal-Fetal Interface, Acting as an Innate Anti-HCMV Effector , 2017, Journal of Virology.

[31]  D. Pyeon,et al.  Roles of APOBEC3A and APOBEC3B in Human Papillomavirus Infection and Disease Progression , 2017, Viruses.

[32]  C. Schiffer,et al.  Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity , 2017, Nature Communications.

[33]  Rommie E. Amaro,et al.  Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B , 2016, Nature Structural &Molecular Biology.

[34]  Reuben S Harris,et al.  The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer , 2016, Science Advances.

[35]  HaroldC. Smith,et al.  The APOBEC Protein Family: United by Structure, Divergent in Function. , 2016, Trends in biochemical sciences.

[36]  M. Weitzman,et al.  APOBEC3A damages the cellular genome during DNA replication , 2016, Cell cycle.

[37]  P. Mieczkowski,et al.  APOBEC3A and APOBEC3B Preferentially Deaminate the Lagging Strand Template during DNA Replication. , 2016, Cell reports.

[38]  Rebecca M. McDougle,et al.  The PKC/NF-κB signaling pathway induces APOBEC3B expression in multiple human cancers. , 2015, Cancer research.

[39]  R. Means,et al.  Mitochondrial DNA Stress Primes the Antiviral Innate Immune Response , 2014, Nature.

[40]  M. Santiago,et al.  APOBEC3A Functions as a Restriction Factor of Human Papillomavirus , 2014, Journal of Virology.

[41]  M. Muramatsu,et al.  APOBEC3 Deaminases Induce Hypermutation in Human Papillomavirus 16 DNA upon Beta Interferon Stimulation , 2013, Journal of Virology.

[42]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[43]  Steven A. Roberts,et al.  An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers , 2013, Nature Genetics.

[44]  N. A. Temiz,et al.  Evidence for APOBEC3B mutagenesis in multiple human cancers , 2013, Nature Genetics.

[45]  Lela Lackey,et al.  Endogenous APOBEC3A DNA Cytosine Deaminase Is Cytoplasmic and Nongenotoxic* , 2013, The Journal of Biological Chemistry.

[46]  Jason B. Nikas,et al.  APOBEC3B is an enzymatic source of mutation in breast cancer , 2013, Nature.

[47]  P. Stepien,et al.  Human mitochondrial RNA decay mediated by PNPase–hSuv3 complex takes place in distinct foci , 2012, Nucleic acids research.

[48]  C. Schiffer,et al.  Methylcytosine and Normal Cytosine Deamination by the Foreign DNA Restriction Enzyme APOBEC3A* , 2012, The Journal of Biological Chemistry.

[49]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[50]  Steven A. Roberts,et al.  Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. , 2012, Molecular cell.

[51]  J. Darnell,et al.  The JAK-STAT pathway at twenty. , 2012, Immunity.

[52]  Elmar Heinzle,et al.  Selective permeabilization for the high-throughput measurement of compartmented enzyme activities in mammalian cells. , 2011, Analytical biochemistry.

[53]  Lela Lackey,et al.  Human and Rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H Demonstrate a Conserved Capacity To Restrict Vif-Deficient HIV-1 , 2011, Journal of Virology.

[54]  Christopher T. Jones,et al.  A diverse array of gene products are effectors of the type I interferon antiviral response , 2011, Nature.

[55]  M. Teitell,et al.  PNPASE Regulates RNA Import into Mitochondria , 2010, Cell.

[56]  W. Brown,et al.  Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction , 2010, Nucleic acids research.

[57]  M. Stenglein,et al.  APOBEC3 proteins mediate the clearance of foreign DNA from human cells , 2010, Nature Structural &Molecular Biology.

[58]  E. Bartnik,et al.  Human mitochondrial RNA turnover caught in flagranti: involvement of hSuv3p helicase in RNA surveillance , 2009, Nucleic acids research.

[59]  G. Barber,et al.  STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity , 2009, Nature.

[60]  M. Malim,et al.  Defining APOBEC3 Expression Patterns in Human Tissues and Hematopoietic Cell Subsets , 2009, Journal of Virology.

[61]  Phang-lang Chen,et al.  Human Mitochondrial SUV3 and Polynucleotide Phosphorylase Form a 330-kDa Heteropentamer to Cooperatively Degrade Double-stranded RNA with a 3′-to-5′ Directionality* , 2009, The Journal of Biological Chemistry.

[62]  G. Barber,et al.  STING an Endoplasmic Reticulum Adaptor that Facilitates Innate Immune Signaling , 2008, Nature.

[63]  P. Munson,et al.  Myeloid differentiation and susceptibility to HIV-1 are linked to APOBEC3 expression. , 2007, Blood.

[64]  W. Greene,et al.  Distinct Patterns of Cytokine Regulation of APOBEC3G Expression and Activity in Primary Lymphocytes, Macrophages, and Dendritic Cells* , 2006, Journal of Biological Chemistry.

[65]  S. Wahl,et al.  Induction of APOBEC3 family proteins, a defensive maneuver underlying interferon-induced anti–HIV-1 activity , 2006, The Journal of experimental medicine.

[66]  T. Katoh,et al.  Human Mitochondrial mRNAs Are Stabilized with Polyadenylation Regulated by Mitochondria-specific Poly(A) Polymerase and Polynucleotide Phosphorylase* , 2005, Journal of Biological Chemistry.

[67]  L. Rönnblom,et al.  Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. , 2004, Arthritis and rheumatism.

[68]  Reuben S Harris,et al.  RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. , 2002, Molecular cell.

[69]  J. Darnell,et al.  Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. , 1994, Science.

[70]  Reuben S Harris,et al.  The APOBEC3 family of retroelement restriction factors. , 2013, Current topics in microbiology and immunology.