Mechanical properties of (Ti2AlC+Ti3AlC)-TiAl ceramic-intermetallic laminate (CIL) composites $

[1]  G. Fan,et al.  Effect of solid solution of Si on mechanical properties of TiAl3 based on the multi-laminated Ti-(SiCP/Al) composite system , 2013 .

[2]  G. Fan,et al.  Wide stacking fault of aluminum for multilayered TiB2/Al–Ni composite by roll bonding process , 2012 .

[3]  G. Fan,et al.  Fabrication of fully dense TiAl-based composite sheets with a novel microlaminated microstructure , 2011 .

[4]  M. Bartsch,et al.  Numerical investigation of room-temperature deformation behavior of a duplex type γTiAl alloy using a multi-scale modeling approach , 2010 .

[5]  V. L. Acoff,et al.  Titanium aluminide sheets made using roll bonding and reaction annealing , 2010 .

[6]  C. Wen,et al.  Ultrafine equiaxed-grain Ti/Al composite produced by accumulative roll bonding , 2010 .

[7]  R. Ritchie,et al.  On the Fracture Toughness of Advanced Materials , 2009 .

[8]  R. Cao,et al.  Fracture behaviour of a TiAl alloy under various loading modes , 2008 .

[9]  R. M. Cannon,et al.  The Utility of R‐Curves for Understanding Fracture Toughness‐Strength Relations in Bridging Ceramics , 2008 .

[10]  W. Zhou,et al.  Microstructure evolution of in situ Mg2Si/Al–Si–Cu composite in semisolid remelting processing , 2005 .

[11]  M. Barsoum,et al.  Synthesis and Characterization of Ti3AlC2 , 2004 .

[12]  Jiaoqun Zhu,et al.  Synthesis of single-phase polycrystalline Ti3SiC2 and Ti3AlC2 by hot pressing with the assistance of metallic Al or Si , 2004 .

[13]  O. Yeheskel,et al.  The effect of processing on the elastic moduli of porous γ-TiAl , 2003 .

[14]  Y. Zhou,et al.  Microstructure and properties of Ti3AlC2 prepared by the solid–liquid reaction synthesis and simultaneous in-situ hot pressing process , 2002 .

[15]  Yanchun Zhou,et al.  Solid–liquid reaction synthesis of layered machinable Ti3AlC2 ceramic , 2002 .

[16]  W. Nix,et al.  Hardness and modulus of the lamellar microstructure in PST-TiAl studied by nanoindentations and AFM , 2001 .

[17]  Sie Chin Tjong,et al.  Microstructural and mechanical characteristics of in situ metal matrix composites , 2000 .

[18]  K. P. Rao,et al.  In situ formation of titanium silicides-reinforced TiAl-based composites , 2000 .

[19]  H. Inui,et al.  High-temperature structural intermetallics , 2000 .

[20]  R. Ritchie Mechanisms of fatigue-crack propagation in ductile and brittle solids , 1999 .

[21]  R. Ritchie,et al.  Fracture toughness and R-Curve behavior of laminated brittle-matrix composites , 1998 .

[22]  M. Yamaguchi,et al.  Dynamic dislocation behaviour in the intermetallic compounds NiAl, TiAl and MoSi2 , 1998 .

[23]  H. M. Chan LAYERED CERAMICS: Processing and Mechanical Behavior , 1997 .

[24]  W. Lee,et al.  Ignition phenomena and reaction mechanisms of the self-propagating high-temperature synthesis reaction in the titanium-carbon-aluminum system , 1997 .

[25]  J. Etourneau,et al.  Local density functional calculations of the electronic structures ofTi2AlC and Ti3AlC , 1997 .

[26]  S. Xiaodong,et al.  THERMAL EXPLOSION SYNTHESIS IN Ti-C-Al SYSTEM , 1996 .

[27]  M. Nakamura,et al.  Effects of aluminum content and microstructure on tensile properties of TiAl alloys , 1996 .

[28]  M. O. Speidel,et al.  Microstructure and tensile properties of TiAl compounds formed by reactive foil metallurgy , 1994 .

[29]  S. Rhee,et al.  Effect of aluminium addition on the combustion reaction of titanium and carbon to form TiC , 1993, Journal of Materials Science.

[30]  D. Eliezer,et al.  Synthesis, properties and applications of titanium aluminides , 1992 .