CLUE: cluster-based retrieval of images by unsupervised learning

In a typical content-based image retrieval (CBIR) system, target images (images in the database) are sorted by feature similarities with respect to the query. Similarities among target images are usually ignored. This paper introduces a new technique, cluster-based retrieval of images by unsupervised learning (CLUE), for improving user interaction with image retrieval systems by fully exploiting the similarity information. CLUE retrieves image clusters by applying a graph-theoretic clustering algorithm to a collection of images in the vicinity of the query. Clustering in CLUE is dynamic. In particular, clusters formed depend on which images are retrieved in response to the query. CLUE can be combined with any real-valued symmetric similarity measure (metric or nonmetric). Thus, it may be embedded in many current CBIR systems, including relevance feedback systems. The performance of an experimental image retrieval system using CLUE is evaluated on a database of around 60,000 images from COREL. Empirical results demonstrate improved performance compared with a CBIR system using the same image similarity measure. In addition, results on images returned by Google's Image Search reveal the potential of applying CLUE to real-world image data and integrating CLUE as a part of the interface for keyword-based image retrieval systems.

[1]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[2]  D. Matula Graph Theoretic Techniques for Cluster Analysis Algorithms , 1977 .

[3]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[5]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  T. Kanade,et al.  A multi-body factorization method for motion analysis , 1995, ICCV 1995.

[7]  K. Wakimoto,et al.  Efficient and Effective Querying by Image Content , 1994 .

[8]  Michael Stonebraker,et al.  Chabot: Retrieval from a Relational Database of Images , 1995, Computer.

[9]  James Lee Hafner,et al.  Efficient Color Histogram Indexing for Quadratic Form Distance Functions , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[11]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Marti A. Hearst,et al.  Reexamining the cluster hypothesis: scatter/gather on retrieval results , 1996, SIGIR '96.

[14]  Shin'ichi Satoh,et al.  The SR-tree: an index structure for high-dimensional nearest neighbor queries , 1997, SIGMOD '97.

[15]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Tom Minka,et al.  Interactive learning with a "society of models" , 1997, Pattern Recognit..

[17]  Thomas S. Huang,et al.  Supporting content-based queries over images in MARS , 1997, Proceedings of IEEE International Conference on Multimedia Computing and Systems.

[18]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Alberto Del Bimbo,et al.  Visual Image Retrieval by Elastic Matching of User Sketches , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  C. Tomasi The Earth Mover's Distance, Multi-Dimensional Scaling, and Color-Based Image Retrieval , 1997 .

[21]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[22]  Pietro Perona,et al.  A Factorization Approach to Grouping , 1998, ECCV.

[23]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[24]  James Ze Wang,et al.  Content-based image indexing and searching using Daubechies' wavelets , 1998, International Journal on Digital Libraries.

[25]  B. S. Manjunath,et al.  NeTra: A toolbox for navigating large image databases , 1997, Multimedia Systems.

[26]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[27]  Simone Santini,et al.  Similarity Measures , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Yair Weiss,et al.  Segmentation using eigenvectors: a unifying view , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[29]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Leslie J. Kitchen,et al.  Object-based image similarity computation using inductive learning of contour-segment relations , 2000, IEEE Trans. Image Process..

[31]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[33]  James Ze Wang,et al.  IRM: integrated region matching for image retrieval , 2000, ACM Multimedia.

[34]  Daphna Weinshall,et al.  Classification with Nonmetric Distances: Image Retrieval and Class Representation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Arnold W. M. Smeulders,et al.  PicToSeek: combining color and shape invariant features for image retrieval , 2000, IEEE Trans. Image Process..

[36]  Ingemar J. Cox,et al.  The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments , 2000, IEEE Trans. Image Process..

[37]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[38]  Sudeep Sarkar,et al.  Supervised Learning of Large Perceptual Organization: Graph Spectral Partitioning and Learning Automata , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Jianying Hu,et al.  Matching and retrieval based on the vocabulary and grammar of color patterns , 2000, IEEE Trans. Image Process..

[40]  Anil K. Jain,et al.  Image classification for content-based indexing , 2001, IEEE Trans. Image Process..

[41]  Thomas S. Huang,et al.  Comparing discriminating transformations and SVM for learning during multimedia retrieval , 2001, MULTIMEDIA '01.

[42]  David A. Forsyth,et al.  Learning the semantics of words and pictures , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[43]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[44]  James Ze Wang,et al.  Unsupervised Multiresolution Segmentation for Images with Low Depth of Field , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Michael Werman,et al.  Self-Organization in Vision: Stochastic Clustering for Image Segmentation, Perceptual Grouping, and Image Database Organization , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Aidong Zhang,et al.  SemQuery: Semantic Clustering and Querying on Heterogeneous Features for Visual Data , 2002, IEEE Trans. Knowl. Data Eng..

[47]  Yixin Chen,et al.  A Region-Based Fuzzy Feature Matching Approach to Content-Based Image Retrieval , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Jitendra Malik,et al.  Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Thomas S. Huang,et al.  Relevance feedback in image retrieval: A comprehensive review , 2003, Multimedia Systems.

[50]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[51]  James Ze Wang,et al.  Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Alex Pentland,et al.  Photobook: Content-based manipulation of image databases , 1996, International Journal of Computer Vision.

[53]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[54]  Tom Minka,et al.  Vision texture for annotation , 1995, Multimedia Systems.