A topological index for the totalπ-electron energy

AbstractA modified topological index $$\tilde Z_G $$ is proposed to be defined as $$\tilde Z_G = \sum\limits_{k = 0}^{[N/2]} {( - 1)^k } a_{2k} $$ for characterising theπ-electronic system of a conjugated hydrocarbonG withN carbon atoms, wherea2k is the coefficient of the characteristic polynomial ofG defined as $$P_G (X) = ( - 1)^N \det |A - XE| = \sum\limits_{k = 0}^N { a_k X^{N - k} } $$ with an adjacency matrixA and the unit matrixE. $$\tilde Z_G $$ is identical toZG for a tree graph, or a chain hydrocarbon.ZG increases with a (4n+2)-membered ring formation and decreases with a 4n-membered ring formation. The totalπ-electron energyEπ of the Hückel molecular orbital is shown to be related with $$\tilde Z_G $$ asEπ =Cln $$\tilde Z_G $$ . With this relation generalised and extended Hückel rules for predicting the stability of an arbitrary network are proved.

[1]  J. W. Kennedy,et al.  The graph-like state of matter. Part 2.—LCGI schemes for the thermodynamics of alkanes and the theory of inductive inference , 1973 .

[2]  Frank Harary,et al.  Graph Theory , 2016 .

[3]  C. A. Coulson,et al.  Note on the method of molecular orbitals , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  C. Coulson Notes on the secular determinant in molecular orbital theory , 1950, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  W. C. Herndon Enumeration of resonance structures , 1973 .

[6]  Nenad Trinajstić,et al.  Graph theory and molecular orbitals—VI , 1973 .

[7]  Kenichi Fukui,et al.  An MO-Theoretical Illumination for the Principle of Stereoselection , 1966 .

[8]  I. Gutman,et al.  Graph theory and molecular orbitals , 1972 .

[9]  W. H. T. Davison,et al.  Theory of Resonance Topology of Fully Aromatic Hydrocarbons. I , 1952 .

[10]  H. Hosoya Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons , 1971 .

[11]  E. Heilbronner,et al.  Das Kompositions‐Prinzip: Eine anschauliche Methode zur elektronen‐theoretischen Behandlung nicht oder niedrig symmetrischer Molekeln im Rahmen der MO‐Theorie , 1953 .

[12]  H. Günthard,et al.  Zusammenhang von Graphentheorie und MO-Theorie von Molekeln mit Systemen konjugierter Bindungen , 1956 .

[13]  D. Rouvray Chemistry and Logical Structures. 1. The Present Position , 1973 .

[14]  H. C. Longuet-Higgins,et al.  The electronic structure of conjugated systems I. General theory , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  Ivan Gutman,et al.  On the number of antibonding MO's in conjugated hydrocarbons , 1974 .

[16]  K. Ruedenberg,et al.  Energy Levels, Atom Populations, Bond Populations in the LCAO MO Model and in the FE MO Model. A Quantitative Analysis , 1958 .

[17]  Haruo Hosoya,et al.  Topological Index and Thermodynamic Properties. I. Empirical Rules on the Boiling Point of Saturated Hydrocarbons , 1972 .

[18]  Haruo Hosoya,et al.  Graphical enumeration of the coefficients of the secular polynomials of the Hückel molecular orbitals , 1972 .

[19]  Resonance topology of polynuclear aromatic hydrocarbons , 1971 .

[20]  Nenad Trinajstić,et al.  Kekulé structures and topology , 1972 .

[21]  Haruo Hosoya,et al.  Topological Index as a Sorting Device for Coding Chemical Structures. , 1972 .

[22]  L. Collatz,et al.  Spektren endlicher grafen , 1957 .

[23]  C. A. Coulson,et al.  On the calculation of the energy in unsaturated hydrocarbon molecules , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.