Transition matrices for symmetric and quasisymmetric Hall-Littlewood polynomials
暂无分享,去创建一个
[1] Jean-Louis Loday,et al. Combinatorial Hopf algebras , 2008, 0810.0435.
[2] Mike Zabrocki,et al. A Lift of the Schur and Hall–Littlewood Bases to Non-commutative Symmetric Functions , 2014, Canadian Journal of Mathematics.
[3] Bruce E. Sagan. Shifted tableaux, schur Q-functions, and a conjecture of R. Stanley , 1987, J. Comb. Theory, Ser. A.
[4] Florent Hivert,et al. Hecke Algebras, Difference Operators, and Quasi-Symmetric Functions , 2000 .
[5] Gregory S. Warrington,et al. Nested Quantum Dyck Paths and ∇(sλ) , 2010 .
[6] I. Gessel. Multipartite P-partitions and inner products of skew Schur functions , 1983 .
[7] S. B. Atienza-Samols,et al. With Contributions by , 1978 .
[8] J. Stembridge. Enriched p-partitions , 1997 .
[9] L. Williams,et al. Combinatorial Hopf algebras, noncommutative Hall–Littlewood functions, and permutation tableaux , 2008, 0804.0995.
[10] N. Loehr,et al. Quasisymmetric expansions of Schur-function plethysms , 2012 .
[11] J. Remmel,et al. A combinatorial interpretation of the inverse kostka matrix , 1990 .
[12] Mike Zabrocki,et al. Q and Q, T-analogs of Non-commutative Symmetric Functions , 2005, Discret. Math..
[14] J. Thibon,et al. Hall-Littlewood functions and Kostka-Foulkes polynomials in representation theory. , 1994 .
[15] L. Tevlin. Noncommutative Analogs of Monomial Symmetric Functions, Cauchy Identity, and Hall Scalar Product , 2007, 0712.2201.
[17] Alain,et al. RIBBON TABLEAUX , HALL-LITTLEWOOD FUNCTIONS AND UNIPOTENT VARIETIES ∗ , 1997 .
[18] Sarah Mason,et al. Quasisymmetric Schur functions , 2011, J. Comb. Theory, Ser. A.
[19] W. Zudilin,et al. Dedekind's η‐function and Rogers–Ramanujan identities , 2010, 1001.1571.
[20] Arun Ram,et al. A combinatorial formula for Macdonald polynomials , 2008, 0803.1146.
[21] J Haglund. A combinatorial model for the Macdonald polynomials. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[22] J. Stembridge. Shifted tableaux and the projective representations of symmetric groups , 1989 .
[23] Alain Lascoux,et al. Noncommutative symmetric functions , 1994 .
[24] Mark D. Haiman. On mixed insertion, symmetry, and shifted young tableaux , 1989, J. Comb. Theory, Ser. A.
[25] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[26] D. E. Littlewood,et al. On Certain Symmetric Functions , 1961 .
[27] Israel M. Gelfand,et al. Noncommutative Symmetrical Functions , 1995 .
[28] Joaquin O. Carbonara,et al. A combinatorial interpretation of the inverse t-Kostka matrix , 1998, Discret. Math..
[29] Lynne M. Butler,et al. Subgroup Lattices and Symmetric Functions , 1994 .
[30] Gregory S. Warrington,et al. From quasisymmetric expansions to Schur expansions via a modified inverse Kostka matrix , 2010, Eur. J. Comb..
[31] Adriano M. Garsia,et al. Orthogonality of Milne's polynomials and raising operators , 1992, Discret. Math..