Stable broken H1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions

We study extensions of piecewise polynomial data prescribed on faces and possibly in elements of a patch of simplices sharing a vertex. In the H1 setting, we look for functions whose jumps across the faces are prescribed, whereas in the H(div) setting, the normal component jumps and the piecewise divergence are prescribed. We show stability in the sense that the minimizers over piecewise polynomial spaces of the same degree as the data are subordinate in the broken energy norm to the minimizers over the whole broken H and H(div) spaces. Our proofs are constructive and yield constants independent of the polynomial degree. One particular application of these results is in a posteriori error analysis, where the present results justify polynomial-degree-robust efficiency of potential and flux reconstructions.

[1]  Dietrich Braess,et al.  Equilibrated residual error estimates are p-robust , 2009 .

[2]  Dietrich Braess,et al.  Equilibrated residual error estimator for edge elements , 2007, Math. Comput..

[3]  Alexandre Ern,et al.  Discrete p-robust H ( div )-liftings and a posteriori estimates for elliptic problems with H − 1 source terms ∗ , 2016 .

[4]  Susanne C. Brenner,et al.  Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..

[5]  M. Vohralík On the Discrete Poincaré–Friedrichs Inequalities for Nonconforming Approximations of the Sobolev Space H 1 , 2005 .

[6]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[7]  Carsten Carstensen,et al.  Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem , 2013, J. Comput. Appl. Math..

[8]  Alexandre Ern,et al.  Equilibrated flux a posteriori error estimates in $L^2(H^1)$-norms for high-order discretizations of parabolic problems , 2017, IMA Journal of Numerical Analysis.

[9]  Martin Costabel,et al.  On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains , 2008, 0808.2614.

[10]  Martin Vohralík,et al.  Guaranteed and Robust a Posteriori Bounds for Laplace Eigenvalues and Eigenvectors: Conforming Approximations , 2017, SIAM J. Numer. Anal..

[11]  Douglas B. West,et al.  A new proof of 3-colorability of Eulerian triangulations , 2011, Ars Math. Contemp..

[12]  Martin Vohralík,et al.  hp-Adaptation Driven by Polynomial-Degree-Robust A Posteriori Error Estimates for Elliptic Problems , 2016, SIAM J. Sci. Comput..

[13]  Martin Vohralík,et al.  Discrete p-robust $$\varvec{H}({{\mathrm{div}}})$$H(div)-liftings and a posteriori estimates for elliptic problems with $$H^{-1}$$H-1 source terms , 2016 .

[14]  P. Mani,et al.  Shellable Decompositions of Cells and Spheres. , 1971 .

[15]  G. Ziegler Lectures on Polytopes , 1994 .

[16]  Martin Vohralík,et al.  Localization of global norms and robust a posteriori error control for transmission problems with sign-changing coefficients , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.

[17]  Martin Vohralík,et al.  Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework , 2018, Numerische Mathematik.

[18]  Joachim Schöberl,et al.  Polynomial Extension Operators. Part II , 2009, SIAM J. Numer. Anal..

[19]  Jens Markus Melenk,et al.  Symmetry-Free, p-Robust Equilibrated Error Indication for the hp-Version of the FEM in Nearly Incompressible Linear Elasticity , 2013, Comput. Methods Appl. Math..

[20]  Martin Vohralík,et al.  Guaranteed, Locally Space-Time Efficient, and Polynomial-Degree Robust a Posteriori Error Estimates for High-Order Discretizations of Parabolic Problems , 2016, SIAM J. Numer. Anal..

[21]  Joachim Schöberl,et al.  Polynomial extension operators. Part III , 2012, Math. Comput..

[22]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[23]  Joachim Schöberl,et al.  Polynomial Extension Operators. Part I , 2008, SIAM J. Numer. Anal..

[24]  Martin Vohralík,et al.  Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..

[25]  Martin Vohralík,et al.  Adaptive inexact iterative algorithms based on polynomial-degree-robust a posteriori estimates for the Stokes problem , 2018, Numerische Mathematik.

[26]  Philippe Destuynder,et al.  Explicit error bounds in a conforming finite element method , 1999, Math. Comput..