Stable broken H1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions
暂无分享,去创建一个
[1] Dietrich Braess,et al. Equilibrated residual error estimates are p-robust , 2009 .
[2] Dietrich Braess,et al. Equilibrated residual error estimator for edge elements , 2007, Math. Comput..
[3] Alexandre Ern,et al. Discrete p-robust H ( div )-liftings and a posteriori estimates for elliptic problems with H − 1 source terms ∗ , 2016 .
[4] Susanne C. Brenner,et al. Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..
[5] M. Vohralík. On the Discrete Poincaré–Friedrichs Inequalities for Nonconforming Approximations of the Sobolev Space H 1 , 2005 .
[6] A. Ern,et al. Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .
[7] Carsten Carstensen,et al. Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem , 2013, J. Comput. Appl. Math..
[8] Alexandre Ern,et al. Equilibrated flux a posteriori error estimates in $L^2(H^1)$-norms for high-order discretizations of parabolic problems , 2017, IMA Journal of Numerical Analysis.
[9] Martin Costabel,et al. On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains , 2008, 0808.2614.
[10] Martin Vohralík,et al. Guaranteed and Robust a Posteriori Bounds for Laplace Eigenvalues and Eigenvectors: Conforming Approximations , 2017, SIAM J. Numer. Anal..
[11] Douglas B. West,et al. A new proof of 3-colorability of Eulerian triangulations , 2011, Ars Math. Contemp..
[12] Martin Vohralík,et al. hp-Adaptation Driven by Polynomial-Degree-Robust A Posteriori Error Estimates for Elliptic Problems , 2016, SIAM J. Sci. Comput..
[13] Martin Vohralík,et al. Discrete p-robust $$\varvec{H}({{\mathrm{div}}})$$H(div)-liftings and a posteriori estimates for elliptic problems with $$H^{-1}$$H-1 source terms , 2016 .
[14] P. Mani,et al. Shellable Decompositions of Cells and Spheres. , 1971 .
[15] G. Ziegler. Lectures on Polytopes , 1994 .
[16] Martin Vohralík,et al. Localization of global norms and robust a posteriori error control for transmission problems with sign-changing coefficients , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.
[17] Martin Vohralík,et al. Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework , 2018, Numerische Mathematik.
[18] Joachim Schöberl,et al. Polynomial Extension Operators. Part II , 2009, SIAM J. Numer. Anal..
[19] Jens Markus Melenk,et al. Symmetry-Free, p-Robust Equilibrated Error Indication for the hp-Version of the FEM in Nearly Incompressible Linear Elasticity , 2013, Comput. Methods Appl. Math..
[20] Martin Vohralík,et al. Guaranteed, Locally Space-Time Efficient, and Polynomial-Degree Robust a Posteriori Error Estimates for High-Order Discretizations of Parabolic Problems , 2016, SIAM J. Numer. Anal..
[21] Joachim Schöberl,et al. Polynomial extension operators. Part III , 2012, Math. Comput..
[22] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[23] Joachim Schöberl,et al. Polynomial Extension Operators. Part I , 2008, SIAM J. Numer. Anal..
[24] Martin Vohralík,et al. Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..
[25] Martin Vohralík,et al. Adaptive inexact iterative algorithms based on polynomial-degree-robust a posteriori estimates for the Stokes problem , 2018, Numerische Mathematik.
[26] Philippe Destuynder,et al. Explicit error bounds in a conforming finite element method , 1999, Math. Comput..