Suppression of escape behaviour during mating in the cricket Acheta domesticus

[1]  H. Nishino Motor output characterizing thanatosis in the cricket Gryllus bimaculatus , 2004, Journal of Experimental Biology.

[2]  F. Schürmann,et al.  Separate Distribution of Deutocerebral Projection Neurons in the Mushroom Bodies of the Cricket Brain , 2004, Acta biologica Hungarica.

[3]  M. Itoh,et al.  Removal of both antennae influences the courtship and aggressive behaviors in male crickets. , 2003, Journal of neurobiology.

[4]  Tsuneo Yamaguchi,et al.  Mechanoreceptors involved in the hindwing-evoked escape behaviour in cricket, Gryllus bimaculatus , 2003, Journal of Experimental Biology.

[5]  C. Comer,et al.  The antennal system and cockroach evasive behavior. II. Stimulus identification and localization are separable antennal functions , 2003, Journal of Comparative Physiology A.

[6]  M. Ureshi,et al.  Serotonin precursor (5-hydroxytryptophan) has a profound effect on the post-copulatory time-fixed sexually refractory stage in the male cricket, Gryllus bimaculatus DeGeer , 2002, Journal of Comparative Physiology A.

[7]  TERESA ESCH,et al.  Decision-Making in the Leech Nervous System1 , 2002, Integrative and comparative biology.

[8]  J. Blagburn,et al.  Presynaptic effects of biogenic amines modulating synaptic transmission between identified sensory neurons and giant interneurons in the first instar cockroach , 2001, Journal of Comparative Physiology A.

[9]  Y. Matsumoto,et al.  Brain Control of Mating Behavior in the Male Cricket Gryllus bimaculatus DeGeer: Excitatory Control of Copulatory Actions , 2001 .

[10]  M. Gebhardt,et al.  Physiological characterisation of antennal mechanosensory descending interneurons in an insect (Gryllus bimaculatus, Gryllus campestris) brain. , 2001, The Journal of experimental biology.

[11]  Hiraguchi,et al.  Escape behavior in response to mechanical stimulation of hindwing in cricket, Gryllus bimaculatus. , 2000, Journal of insect physiology.

[12]  Snell,et al.  The role of cercal sensory feedback during spermatophore transfer in the cricket, Acheta domesticus. , 2000, Journal of insect physiology.

[13]  K. Schildberger,et al.  The fight and flight responses of crickets depleted of biogenic amines. , 2000, Journal of neurobiology.

[14]  Y. Matsumoto,et al.  Brain control of mating behavior in the male cricket Gryllus bimaculatus DeGeer: the center for inhibition of copulation actions. , 2000, Journal of insect physiology.

[15]  R. Gillette,et al.  Cost-benefit analysis potential in feeding behavior of a predatory snail by integration of hunger, taste, and pain. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[16]  J. Jing,et al.  Escape swim network interneurons have diverse roles in behavioral switching and putative arousal in Pleurobranchaea. , 2000, Journal of neurophysiology.

[17]  T. Roeder,et al.  Octopamine in invertebrates , 1999, Progress in Neurobiology.

[18]  W. Kristan,et al.  Behavioral hierarchy in the medicinal leech, Hirudo medicinalis: feeding as a dominant behavior , 1998, Behavioural Brain Research.

[19]  W. Kristan,et al.  Population coding and behavioral choice , 1997, Current Opinion in Neurobiology.

[20]  T. Tregenza,et al.  Definitive evidence for cuticular pheromones in a cricket , 1997, Animal Behaviour.

[21]  T. Nolen,et al.  Courtship song, male agonistic encounters, and female mate choice in the house cricket,Acheta domesticus (Orthoptera: Gryllidae) , 1997, Journal of Insect Behavior.

[22]  H. Nishino,et al.  Behaviorally significant immobile state of so-called thanatosis in the cricket Gryllus bimaculatus DeGeer: its characterization, sensory mechanism and function , 1996, Journal of Comparative Physiology A.

[23]  R. Satterlie,et al.  Whole body withdrawal circuit and its involvement in the behavioral hierarchy of the mollusk Clione limacina. , 1996, Journal of neurophysiology.

[24]  G. Pollack,et al.  Recognition of courtship song in the field cricket,Teleogryllus oceanicus , 1996, Animal Behaviour.

[25]  J. Jing,et al.  Neuronal elements that mediate escape swimming and suppress feeding behavior in the predatory sea slug Pleurobranchaea. , 1995, Journal of neurophysiology.

[26]  R R Hoy,et al.  The role of neurohormonal octopamine during 'fight or flight' behaviour in the field cricket Gryllus bimaculatus. , 1995, The Journal of experimental biology.

[27]  Hustert,et al.  The motor program for defensive kicking in crickets: performance and neural control , 1995, The Journal of experimental biology.

[28]  H. Chiel,et al.  Neural architectures for adaptive behavior , 1994, Trends in Neurosciences.

[29]  J. T. Watson,et al.  The escape response versus the quiescent response of the American cockroach: behavioural choice mediated by physiological state , 1994, Animal Behaviour.

[30]  S. Adamo,et al.  Mating behaviour of the field cricket Gryllus bimaculatus and its dependence on social and environmental cues , 1994, Animal Behaviour.

[31]  R. Murphey,et al.  Transplantation of neurons reveals processing areas and rules for synaptic connectivity in the cricket nervous system. , 1993, Journal of neurobiology.

[32]  M. Hörner,et al.  Wind-Evoked Escape Running of the cricket Gryllus Bimaculatus: I. Behavioural Analysis , 1992 .

[33]  R E Ritzmann,et al.  Biogenic amines modulate synaptic transmission between identified giant interneurons and thoracic interneurons in the escape system of the cockroach. , 1992, Journal of neurobiology.

[34]  R. Satterlie,et al.  Neuronal mechanisms underlying behavioral switching in a pteropod mollusc , 1990, Journal of Comparative Physiology A.

[35]  F B Krasne,et al.  Response-dedicated trigger neurons as control points for behavioral actions: selective inhibition of lateral giant command neurons during feeding in crayfish , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  M. Sakai,et al.  Mechanism of execution of sequential motor acts during copulation behavior in the male cricketGryllus bimaculatus DeGeer , 1988, Journal of Comparative Physiology A.

[37]  W. Gnatzy,et al.  Digger wasp against crickets , 1986, Naturwissenschaften.

[38]  R. Hustert Multisegmental Integration and Divergence of Afferent Information from Single Tactile Hairs in a Cricket , 1985 .

[39]  T. Hardy,et al.  The role of chemoreception in sex recognition by male crickets: Acheta domesticus and Teleogryllus oceanicus , 1983 .

[40]  U. Klein Sensilla of the cricket palp , 1981, Cell and Tissue Research.

[41]  A. D. Ruiter Testosterone-dependent changes in vivo and in vitro in the structure of the renal glomeruli of the teleost Gasterosteus aculeatus L. , 1981, Cell and Tissue Research.

[42]  M. Kovac,et al.  Neural mechanism underlying behavioral choice in Pleurobranchaea. , 1980, Journal of neurophysiology.

[43]  O. Crankshaw Female choice in relation to calling and courtship songs in Acheta domesticus , 1979, Animal Behaviour.

[44]  B. Rence,et al.  Contact chemoreceptive sex recognition in the male cricket, Teleogryllus commodus , 1977 .

[45]  V. Barnett,et al.  Applied Linear Statistical Models , 1975 .

[46]  W. Davis,et al.  The behavioral hierarchy of the molluskPleurobranchaea , 1974, Journal of comparative physiology.

[47]  R. Patton,et al.  Studies on circadian rhythm of the house cricket, Gryllus domesticus L.☆ , 1963 .

[48]  N. Tinbergen,et al.  The Study of Instinct , 1953 .

[49]  K. Dumpert,et al.  Cricket combined mechanoreceptors and kicking response , 2004, Journal of comparative physiology.

[50]  W. Davis,et al.  The behavioral hierarchy of the molluskPleurobranchaea , 2004, Journal of comparative physiology.

[51]  C. M. Comer,et al.  Multisensory control of escape in the cockroach Periplaneta americana , 2004, Journal of Comparative Physiology A.

[52]  C. M. Comer,et al.  Multisensory control of escape in the cockroach Penplaneta americana , 2004, Journal of Comparative Physiology A.

[53]  J. Camhi,et al.  Different effects of the biogenic amines dopamine, serotonin and octopamine on the thoracic and abdominal portions of the escape circuit in the cockroach , 2004, Journal of Comparative Physiology A.

[54]  W. Davis,et al.  Modification of the behavioral hierarchy ofPleurobranchaea , 2004, Journal of comparative physiology.

[55]  E. Staudacher,et al.  A newly described neuropile in the deutocerebrum of the cricket: antennal afferents and descending interneurons. , 2000 .

[56]  B. Hansson,et al.  The maxillary palp sensory pathway of Orthoptera. , 2000, Arthropod structure & development.

[57]  L. Simmons,et al.  Reproductive strategies of the crickets (Orthoptera: Gryllidae) , 1997 .

[58]  B. Crespi,et al.  The Evolution of Mating Systems in Insects and Arachnids: Contents , 1997 .

[59]  D. Gwynne The Evolution of Mating Systems in Insects and Arachnids: The evolution of edible ‘sperm sacs’ and other forms of courtship feeding in crickets, katydids and their kin (Orthoptera: Ensifera) , 1997 .

[60]  Balakrishnan,et al.  The role of antennal sensory cues in female responses to courting males in the cricket Teleogryllus oceanicus , 1997, The Journal of experimental biology.

[61]  P. L. Newland,et al.  Physiological properties of afferents from tactile hairs on the hindlegs of the locust. , 1991, The Journal of experimental biology.

[62]  Franz Huber,et al.  Cricket behavior and neurobiology , 1989 .

[63]  Ouida W. Meier,et al.  Effect of development, photoperiod, and stress on octopamine levels in the house cricket, Acheta domesticus , 1988 .

[64]  Anthony P. Davenport,et al.  Stress-induced changes in the octopamine levels of insect haemolymph , 1984 .

[65]  J. Treherne,et al.  The physiology of the insect central nervous system. Papers from the 12th International Congress of Entomology held in London, 1964. , 1965 .

[66]  F. Huber Brain controlled behaviour in Orthopterans , 1965 .

[67]  R. D. Alexander,et al.  Aggressiveness, Territoriality, and Sexual Behavior in Field Crickets (Orthoptera: Gryllidae) , 1961 .