Bounds on the Lagrangian spectral metric in cotangent bundles

Let $N$ be a closed manifold and $U \subset T^*(N)$ a bounded domain in the cotangent bundle of $N$, containing the zero-section. A conjecture due to Viterbo asserts that the spectral metric for Lagrangian submanifolds that are exact-isotopic to the zero-section is bounded. In this paper we establish an upper bound on the spectral distance between two such Lagrangians $L_0, L_1$, which depends linearly on the boundary depth of the Floer complexes of $(L_0, F)$ and $(L_1, F)$, where $F$ is a fiber of the cotangent bundle.

[1]  M. Khanevsky,et al.  Hofer's metric on the space of diameters , 2009, 0907.1499.

[2]  P. Seidel,et al.  The Symplectic Geometry of Cotangent Bundles from a Categorical Viewpoint , 2007, 0705.3450.

[3]  J. Katić,et al.  Piunikhin–Salamon–Schwarz isomorphisms for Lagrangian intersections , 2005 .

[4]  Michael Usher Hofer's metrics and boundary depth , 2011, 1107.4599.

[5]  Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds , 2009, 0903.0903.

[6]  Microlocal branes are constructible sheaves , 2006, math/0612399.

[7]  Jun Zhang,et al.  Persistent homology and Floer-Novikov theory , 2015, 1502.07928.

[8]  C. Viterbo Symplectic Homogenization , 2007, Journal de l’École polytechnique — Mathématiques.

[9]  Y. Oh,et al.  Lagrangian Intersection Floer Theory: Anomaly and Obstruction, Part I , 2010 .

[10]  Paul Seidel,et al.  Fukaya Categories and Picard-Lefschetz Theory , 2008 .

[11]  Weiwei Wu,et al.  Dehn twist exact sequences through Lagrangian cobordism , 2015, Compositio Mathematica.

[12]  Y. Oh,et al.  Lagrangian intersection floer theory : anomaly and obstruction , 2009 .

[13]  Claude Viterbo,et al.  Symplectic topology as the geometry of generating functions , 1992 .

[14]  Y. Oh Symplectic topology as the geometry of action functional. I. Relative Floer theory on the cotangent bundle , 1997 .

[15]  E. Shelukhin Viterbo conjecture for Zoll symmetric spaces , 2018, Inventiones mathematicae.

[16]  Exact Lagrangian submanifolds in simply-connected cotangent bundles , 2007, math/0701783.

[17]  L. Polterovich,et al.  Topological Persistence in Geometry and Analysis , 2019, University Lecture Series.

[18]  F. Lalonde,et al.  Homological Lagrangian monodromy , 2009, 0912.1325.

[19]  O. Cornea,et al.  Lagrangian Shadows and Triangulated Categories , 2018, 1806.06630.

[20]  K. Cieliebak,et al.  Lagrangian embeddings into subcritical Stein manifolds , 2002 .

[21]  Peter Albers A Lagrangian Piunikhin-Salamon-Schwarz Morphism and Two Comparison Homomorphisms in Floer Homology , 2005, math/0512037.

[22]  R. Leclercq Spectral invariants in Lagrangian Floer theory , 2006, math/0612325.

[23]  Jelena Kati'c,et al.  Comparison of spectral invariants in Lagrangian and Hamiltonian Floer theory , 2014, 1403.6317.

[24]  Jelena Kati'c,et al.  Spectral Invariants in Lagrangian Floer homology of open subset , 2014, 1411.7807.

[25]  L. Polterovich,et al.  Persistence modules with operators in Morse and Floer theory , 2017, 1703.01392.

[26]  O. Cornea,et al.  Lagrangian cobordism and Fukaya categories , 2014, Geometric and Functional Analysis.

[27]  Y. Oh Symplectic topology as the geometry of action functional, II: Pants product and cohomological invariants , 1999 .

[28]  R. Leclercq,et al.  Spectral invariants for monotone Lagrangians , 2015, Journal of Topology and Analysis.

[29]  O. Cornea,et al.  Cone-decompositions of Lagrangian cobordisms in Lefschetz fibrations , 2017 .

[30]  A. Kislev,et al.  Bounds on spectral norms and barcodes , 2018, Geometry & Topology.

[31]  K. Cieliebak,et al.  From Stein to Weinstein and Back: Symplectic Geometry of Affine Complex Manifolds , 2012 .