Chuar Group of the Grand Canyon: record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma.
暂无分享,去创建一个
A. Knoll | Z. Sharp | K. Karlstrom | D. D. Des Marais | S. Bowring | J. Geissman | L. Crossey | A. Weil | S. Porter | J. Timmons | M. Elrick | C. Dehler | K. Davidek
[1] K. Karlstrom,et al. Proterozoic multistage (ca. 1.1 and 0.8 Ga) extension recorded in the Grand Canyon Supergroup and establishment of northwest- and north-trending tectonic grains in the southwestern United States , 2001 .
[2] A. Knoll,et al. Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon , 2000, Paleobiology.
[3] M. Walter,et al. Dating the 840–544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models , 2000 .
[4] M. Wingate,et al. Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia: implications for an Australia–Laurentia connection at 755 Ma , 2000 .
[5] Xian‐Hua Li,et al. The breakup of Rodinia: did it start with a mantle plume beneath South China? , 1999 .
[6] John W. Geissman,et al. Refining Rodinia: geologic evidence for the Australia-western U , 1999 .
[7] A. J. Kaufman,et al. δ13C stratigraphy of the Proterozoic Bylot Supergroup, Baffin Island, Canada: implications for regional lithostratigraphic correlations , 1999 .
[8] A. Prave. Two diamictites, two cap carbonates, two δ13C excursions, two rifts: The Neoproterozoic Kingston Peak Formation, Death Valley, California: Comment and Reply , 1999 .
[9] Halverson,et al. A neoproterozoic snowball earth , 1998, Science.
[10] Erwin,et al. U/Pb zircon geochronology and tempo of the end-permian mass extinction , 1998, Science.
[11] R. Voo,et al. THE PROTEROZOIC SUPERCONTINENT RODINIA : PALEOMAGNETICALLY DERIVED RECONSTRUCTIONS FOR 1100 TO 800 MA , 1998 .
[12] Q. Zhang,et al. Palaeomagnetic study of Neoproterozoic glacial rocks of the Yangzi Block: palaeolatitude and configuration of South China in the late Proterozoic Supercontinent , 1997 .
[13] A. J. Kaufman,et al. Isotopes, ice ages, and terminal Proterozoic earth history. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[14] John K. Park. Paleomagnetic evidence for low-latitude glaciation during deposition of the Neoproterozoic Rapitan Group, Mackenzie Mountains, N.W.T., Canada , 1997 .
[15] I. Dalziel. OVERVIEW: Neoproterozoic-Paleozoic geography and tectonics: Review, hypothesis, environmental speculation , 1997 .
[16] G. M. Young,et al. The early Neoproterozoic sedimentary Succession B of northwestern Laurentia: Correlations and paleogeographic significance , 1996 .
[17] J. Meert. Paleomagnetic investigation of the Neoproterozoic Gagwe lavas and Mbozi complex, Tanzania and the assembly of Gondwana , 1995 .
[18] A. J. Kaufman,et al. The carbon-isotopic composition of Proterozoic carbonates: Riphean successions from northwestern Siberia (Anabar Massif, Turukhansk Uplift). , 1995, American journal of science.
[19] C. Powell,et al. South China in Rodinia: Part of the missing link between Australia–East Antarctica and Laurentia? , 1995 .
[20] H. Krouse,et al. Neoproterozoic strata of the southern Canadian Cordillera and the isotopic evolution of seawater sulfate , 1995 .
[21] A. J. Kaufman,et al. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. , 1995, Precambrian research.
[22] M. Levy,et al. Neoproterozoic Incised Valleys of the Eastern Great Basin, Utah and Idaho: Fluvial Response to Changes in Depositional Base Level , 1994 .
[23] D. P. Elston,et al. Middle and Late Proterozoic stratified rocks of the western U.S. Cordillera, Colorado Plateau, and Basin and Range province , 1993 .
[24] A. Knoll,et al. The early evolution of eukaryotes: a geological perspective. , 1992, Science.
[25] H. Strauss,et al. The Proterozoic Biosphere: Abundances and Isotopic Compositions of Carbon and Sulfur Species in Whole Rock and Kerogen Samples , 1992 .
[26] A. Knoll. Biological and Biogeochemical Preludes to the Ediacaran Radiation , 1992 .
[27] J. Schopf. The Proterozoic Biosphere: Evolution of the Proterozoic Biosphere: Benchmarks, Tempo, and Mode , 1992 .
[28] A. J. Kaufman,et al. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland , 1986, Nature.
[29] B. Bloeser. MELANOCYRILLIUM, A NEW GENUS OF STRUCTURALLY COMPLEX LATE PROTEROZOIC MICROFOSSILS FROM THE KWAGUNT FORMATION (CHUAR GROUP), GRAND CANYON, ARIZONA , 1985 .
[30] T. Ford,et al. Microbiotas from the late proterozoic chuar group (northern Arizona) and uinta mountain group (Utah) and their chronostratigraphic implications , 1985 .
[31] R. J. Horodyski,et al. Possible eukaryotic algal filaments from the late Proterozoic Chuar Group, Grand Canyon, Arizona , 1983 .
[32] P. Sadler. Sediment Accumulation Rates and the Completeness of Stratigraphic Sections , 1981, The Journal of Geology.
[33] D. P. Elston. Late Precambrian Sixtymile Formation and orogeny at top of the Grand Canyon Supergroup, northern Arizona , 1979 .
[34] T. Ford,et al. Late Precambrian Chuar Group, Grand Canyon, Arizona , 1973 .
[35] T. Ford,et al. Microorganisms from the Late Precambrian of the Grand Canyon, Arizona , 1973, Science.