An Application of Singularity Theory to Robust Geometric Calculation of Interactions Among Dynamically Deforming Geometric Objects

This dissertation presents a general mathematical framework for geometric inquiries and geometric operations on dynamically deforming models, performing the efficient and robust computation of these events: (1) Evolution of an existing solution to a nearby one under small perturbation; (2) Detection of transition events; (3) Identification of the set of transition points where a structural change of solutions, i.e., a transition event, occurs; (4) Classification of transition type such as creation, annihilation etc.; (5) Computation of the actual geometry that realizes the structural change of a detected and classified transition event. The general mathematical framework starts with formulating the problem in a solution space that is the product of the parametric space in which curves or surfaces are defined and the control space in which deformation is defined. The entire solution is encoded as a manifold in this solution space. Then, independent tangent vector fields are constructed on this solution manifold, and are used to define the differential of the projection map from the solution manifold to the control space. If this projection map is locally nonsingular, it can be used to associate the perturbation in the control space to the incremental change in the solution space that is required to evolve the existing solution to the nearby one under the specific perturbation. On the other hand, at a critical point of the projection map, a Morse function is constructed and its Hessian function is computed from covariant derivatives of the tangent vector fields. Consequently, the transition event, i.e., the structural change between nearby solutions, is computed by the local shape approximation to the manifold at the critical point. This dissertation also significantly advances the state-of-the-art regarding efficient symbolic computation on B-spline curves, which is one of the most fundamental operations in geometric modeling and is also essential to an efficient and robust tracking of point-curve distances.

[1]  M. Berry An introduction to Catastrophe Theory , 1981 .

[2]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[3]  Nicholas M. Patrikalakis,et al.  Computation of singularities and intersections of offsets of planar curves , 1993, Comput. Aided Geom. Des..

[4]  Robert E. Barnhill,et al.  A marching method for parametric surface/surface intersection , 1990, Comput. Aided Geom. Des..

[5]  Kenji Ueda,et al.  Multiplication as a general operation for splines , 1994 .

[6]  B. O'neill Elementary Differential Geometry , 1966 .

[7]  Nicholas M. Patrikalakis,et al.  Surface-to-surface intersections , 1993, IEEE Computer Graphics and Applications.

[8]  B. G. Prakash,et al.  Computing offsets of trimmed NURBS surfaces , 2003, Comput. Aided Des..

[9]  H. B. Griffiths CRITICAL POINT THEORY IN GLOBAL ANALYSIS AND DIFFERENTIAL TOPOLOGY , 1971 .

[10]  J. Mather Stability of C ∞ mappings: VI the nice dimensions , 1971 .

[11]  Peter Shirley,et al.  Realistic ray tracing , 2000 .

[12]  Nicholas M. Patrikalakis,et al.  Topologically reliable approximation of composite Bézier curves , 1996, Comput. Aided Geom. Des..

[13]  Takashi Maekawa,et al.  An overview of offset curves and surfaces , 1999, Comput. Aided Des..

[14]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[15]  James N. Damon,et al.  Determining the Geometry of Boundaries of Objects from Medial Data , 2005, International Journal of Computer Vision.

[16]  J. Damon Smoothness and geometry of boundaries associated to skeletal structures, II: Geometry in the Blum case , 2004, Compositio Mathematica.

[17]  Guo-lianXu CURVATURE COMPUTATIONS OF 2-MANIFOLDS IN IR^k , 2003 .

[18]  Chandrajit L. Bajaj,et al.  Tracing surface intersections , 1988, Comput. Aided Geom. Des..

[19]  Michael E. Hohmeyer,et al.  A surface intersection algorithm based on loop detection , 1991, SMA '91.

[20]  唐敏,et al.  Intersections of two offset parametric surfaces based on topology analysis , 2004 .

[21]  T. Sederberg,et al.  Improved test for closed loops in surface intersections , 1989 .

[22]  Alexis Gourdon,et al.  Computing the Differential Characteristics of Isointensity Surfaces , 1995, Comput. Vis. Image Underst..

[23]  Dong-Soo Kim,et al.  Surface slicing algorithm based on topology transition , 2001, Comput. Aided Des..

[24]  J. Mather,et al.  Stability of C∞ mappings, IV: Classification of stable germs by R-algebrasmappings, IV: Classification of stable germs by R-algebras , 1969 .

[25]  Christoph M. Hoffmann,et al.  Eliminating extraneous solutions in curve and surface operations , 1991, Int. J. Comput. Geom. Appl..

[26]  Nicholas M. Patrikalakis,et al.  Shape Interrogation for Computer Aided Design and Manufacturing , 2002, Springer Berlin Heidelberg.

[27]  J. Mather,et al.  Stability of C∞ mappings, I, the division theorem , 1968 .

[28]  Ian Stewart,et al.  Taylor expansions and catastrophes , 1976 .

[29]  Michael I. Jordan,et al.  Surface/surface intersection , 1987, Comput. Aided Geom. Des..

[30]  S. Mudur,et al.  A new class of algorithms for the processing of parametric curves , 1983 .

[31]  Xiuzi Ye,et al.  Robust interval algorithm for surface intersections , 1997, Comput. Aided Des..

[32]  Ming C. Lin,et al.  Efficient collision detection for animation and robotics , 1993 .

[33]  Elaine Cohen,et al.  A framework for efficient minimum distance computations , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[34]  Ron Goldman,et al.  Functional composition algorithms via blossoming , 1993, TOGS.

[35]  Tom Lyche,et al.  Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .

[36]  J. Mather,et al.  Stability of $C^\infty $ mappings, IV. Classification of stable germs by $R$-algebras , 1969 .

[37]  M LaneJeffrey,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980 .

[38]  Tomoyuki Nishita,et al.  Curve intersection using Bézier clipping , 1990, Comput. Aided Des..

[39]  Ian R. Porteous,et al.  Geometric differentiation for the intelligence of curves and surfaces , 1994 .

[40]  Xiuzi Ye,et al.  Differential geometry of intersection curves of two surfaces , 1999, Comput. Aided Geom. Des..

[41]  Gershon Elber,et al.  The bisector surface of rational space curves , 1998, TOGS.

[42]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[43]  Helmut Pottmann,et al.  Optimal slicing of free-form surfaces , 2002, Comput. Aided Geom. Des..

[44]  Nicholas M. Katz,et al.  Group extensions of p-adic and adelic linear groups . On the differential equations satisfied by period matrices . Théorème de lefschetz et critères de dégénérescence de suites spectrales . Stability of C mappings, III : finitely determined map-germs , 1968 .

[45]  Elaine Cohen,et al.  Surface Completion of an Irregular Boundary Curve Using a Concentric Mapping , 2002 .

[46]  Thomas W. Sederberg,et al.  Loop detection in surface patch intersections , 1988, Comput. Aided Geom. Des..

[47]  Xianming Chen,et al.  Sliding windows algorithm for B-spline multiplication , 2007, Symposium on Solid and Physical Modeling.

[48]  Bernd Hamann Visualization and modeling contours of trivariate functions , 1991 .

[49]  Gershon Elber,et al.  Bisector curves of planar rational curves , 1998, Comput. Aided Des..

[50]  P. Giblin,et al.  Curves and Singularities , 1984 .

[51]  Ron Goldman,et al.  Curvature formulas for implicit curves and surfaces , 2005, Comput. Aided Geom. Des..

[52]  Nicholas M. Patrikalakis,et al.  Computation of the solutions of nonlinear polynomial systems , 1993, Comput. Aided Geom. Des..

[53]  Thomas W. Sederberg,et al.  Pyramids That Bound Surface Patches , 1996, CVGIP Graph. Model. Image Process..

[54]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[55]  K. Mørken Some identities for products and degree raising of splines , 1991 .

[56]  J. Mather Stability of C ∞ Mappings: II. Infinitesimal Stability Implies Stability , 1969 .

[57]  Kenneth James Versprille Computer-aided design applications of the rational b-spline approximation form. , 1975 .

[58]  Gershon Elber,et al.  Global curvature analysis and segmentation of volumetric data sets using trivariate B-spline functions , 2004, Geometric Modeling and Processing, 2004. Proceedings.

[59]  Elaine Cohen,et al.  Bound coherence for minimum distance computations , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[60]  Gershon Elber,et al.  Subdivision termination criteria in subdivision multivariate solvers using dual hyperplanes representations , 2007, Comput. Aided Des..

[61]  Rida T. Farouki,et al.  Analytic properties of plane offset curves , 1990, Comput. Aided Geom. Des..

[62]  Gershon Elber,et al.  A computational model for nonrational bisector surfaces: curve-surface and surface-surface bisectors , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[63]  Nicholas M. Patrikalakis,et al.  Topological and differential-equation methods for surface intersections , 1992, Comput. Aided Des..

[64]  J. Mather Stability of C∞ mappings: V, transversality , 1970 .

[65]  Dinesh Manocha,et al.  Collision and Proximity Queries , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[66]  Gershon Elber,et al.  Second-order surface analysis using hybrid symbolic and numeric operators , 1993, TOGS.

[67]  Gershon Elber,et al.  Comparing Offset Curve Approximation Methods , 1997, IEEE Computer Graphics and Applications.

[68]  Binh Pham,et al.  Offset curves and surfaces: a brief survey , 1992, Comput. Aided Des..

[69]  Jin J. Chou Voronoi diagrams for planar shapes , 1995, IEEE Computer Graphics and Applications.

[70]  Rida T. Farouki,et al.  On the numerical condition of polynomials in Bernstein form , 1987, Comput. Aided Geom. Des..

[71]  Richard Franklin Riesenfeld,et al.  Applications of b-spline approximation to geometric problems of computer-aided design. , 1973 .

[72]  Gershon Elber,et al.  Trimming local and global self-intersections in offset curves/surfaces using distance maps , 2006, Comput. Aided Des..

[73]  Gershon Elber,et al.  Symbolic and Numeric Computation in Curve Interrogation , 1995, Comput. Graph. Forum.

[74]  J. Damon Smoothness and geometry of boundaries associated to skeletal structures, II: Geometry in the Blum case , 2004, Compositio Mathematica.

[75]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[76]  Alfred M. Bruckstein,et al.  Shape offsets via level sets , 1993, Comput. Aided Des..

[77]  T. Sakkalis,et al.  Pythagorean hodographs , 1990 .

[78]  W. Boehm Inserting New Knots into B-spline Curves , 1980 .

[79]  Rida T. Farouki,et al.  Computing Point/Curve and Curve/Curve Bisectors , 1992, IMA Conference on the Mathematics of Surfaces.

[80]  A. Pressley Elementary Differential Geometry , 2000 .

[81]  Xianming Chen,et al.  Rational Bezier patch differentiation using the rational forward difference operator , 2005, International 2005 Computer Graphics.

[82]  Gershon Elber,et al.  Geometric constraint solver using multivariate rational spline functions , 2001, SMA '01.

[83]  Les A. Piegl,et al.  Symbolic operators for NURBS , 1997, Comput. Aided Des..

[84]  R. L. Magedson,et al.  Solutions of tangential surface and curve intersections , 1989 .

[85]  T. J. Rivlin Bounds on a polynomial , 1970 .

[86]  Nicholas M. Patrikalakis,et al.  Interrogation of differential geometry properties for design and manufacture , 2005, The Visual Computer.

[87]  Karim Abdel-Malek,et al.  Determining intersection curves between surfaces of two solids , 1996, Comput. Aided Des..

[88]  Rida T. Farouki,et al.  Algorithms for polynomials in Bernstein form , 1988, Comput. Aided Geom. Des..

[89]  Gershon Elber,et al.  Geometric modeling with splines - an introduction , 2001 .

[90]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[91]  Gershon Elber,et al.  Error bounded variable distance offset operator for free form curves and surfaces , 1991, Int. J. Comput. Geom. Appl..

[92]  Rida T. Farouki,et al.  Specified-Precision Computation of Curve/Curve Bisectors , 1998, Int. J. Comput. Geom. Appl..

[93]  Gershon Elber,et al.  Perspective silhouette of a general swept volume , 2006, The Visual Computer.