Quantifier Elimination in Elementary Set Theory

In the current paper we provide two methods for quantifier elimination applicable to a large class of formulas of the elementary set theory. The first one adapts the Ackermann method [1] and the second one adapts the fixpoint method of [20]. We show applications of the proposed techniques in the theory of correspondence between modal logics and elementary set theory. The proposed techniques can also be applied in an automated generation of proof rules based on the semantic-based translation of axioms of a given logic into the elementary set theory.

[1]  J. Łoś Un théorème sur les superpositions des fonctions définies dans les ensembles arbitraires , 1950 .

[2]  Andrzej Skowron,et al.  Rough-Neural Computing: Techniques for Computing with Words , 2004, Cognitive Technologies.

[3]  Andrzej Szałas,et al.  On a static verification of integrity constraints in relational databases , 2001 .

[4]  A. Szałas,et al.  A Fixpoint Approach to Second-Order Quantifier Elimination with Applications to Correspondence Theory , 1999 .

[5]  Alberto Policriti,et al.  Rasiowa-Sikorski Style Relational Elementary Set Theory , 2003, RelMiCS.

[6]  Andrzej Szalas Second-Order Quantifier Elimination in Modal Contexts , 2002, JELIA.

[7]  Ewa Orlowska,et al.  Dynamic logic with program specifications and its relational proof system , 1993, J. Appl. Non Class. Logics.

[8]  W. Ackermann Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .

[9]  Stéphane Demri,et al.  Logical Analysis of Demonic Nondeterministic Programs , 1996, Theor. Comput. Sci..

[10]  Andrzej Szałas,et al.  On a Static Approach to Verification of Integrity Constraints in Relational Databases , 2001 .

[11]  A. Arnold,et al.  Rudiments of μ-calculus , 2001 .

[12]  Andrzej Szalas On an Automated Translation of Modal Proof Rules into Formulas of the Classical Logic , 1994, J. Appl. Non Class. Logics.

[13]  H. Rasiowa,et al.  Logic at work : essays dedicated to the memory of Helena Rasiowa , 1999 .

[14]  Angelo Montanari,et al.  A set-theoretic translation method for polymodal logics , 2004, Journal of Automated Reasoning.

[15]  Vladimir Lifschitz,et al.  Computing Circumscription , 1985, IJCAI.

[16]  Andrzej Sza Las On Correspondence Between Modal and Classical Logic: Automated Approach , 1992 .

[17]  Patrick Doherty,et al.  Computing Circumscription Revisited: Preliminary Report , 1995, IJCAI.

[18]  Ewa Orlowska Relational Formalisation of Nonclassical Logics , 1997, Relational Methods in Computer Science.

[19]  Ivo Düntsch,et al.  A Proof System for Contact Relation Algebras , 2000, J. Philos. Log..

[20]  Ewa Orlowska,et al.  Relational Semantics for Nonclassical Logics: Formulas are Relations , 1994 .

[21]  Patrick Doherty,et al.  Declarative PTIME Queries for Relational Databases using Quantifier Elimination , 1999, J. Log. Comput..

[22]  Ewa Orlowska,et al.  Relational proof system for relevant logics , 1992, Journal of Symbolic Logic.

[23]  Ewa Orlowska,et al.  Correspondence Results for Relational Proof Systems with Application to the Lambek Calculus , 2002, Stud Logica.

[24]  J.F.A.K. van Benthem,et al.  Modal Correspondence Theory , 1977 .

[25]  Patrick Doherty,et al.  Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.

[26]  E. Orlowska Relational interpretation of modal logics , 1988 .

[27]  Andrzej Szałas,et al.  ELIMINATION OF PREDICATE QUANTIFIERS , 1999 .

[28]  Uwe Reyle,et al.  Logic, Language and Reasoning , 1999 .

[29]  Patrick Doherty,et al.  Computing Strongest Necessary and Weakest Sufficient Conditions of First-Order Formulas , 2001, IJCAI.

[30]  Patrick Doherty,et al.  Using Contextually Closed Queries for Local Closed-World Reasoning in Rough Knowledge Databases , 2004, Rough-Neural Computing: Techniques for Computing with Words.

[31]  Ewa Orlowska,et al.  Relational Methods for Computer Science Applications , 2001 .

[32]  Ewa Orlowska,et al.  Relational Proof Systems for Modal Logics , 1996 .

[33]  Andrzej Szalas On the Correspondence between Modal and Classical Logic: An Automated Approach , 1993, J. Log. Comput..

[34]  Marcelo F. Frias,et al.  A proof system for fork algebras and its applications to reasoning in logics based on intuitionism , 1995 .

[35]  Georg Struth,et al.  Relational and Kleene-Algebraic Methods in Computer Science , 2003, Lecture Notes in Computer Science.

[36]  A. Szałas On a Logical Approach to Estimating Computational Complexity of Potentially Intractable Problems , 2003, FCT.

[37]  J.F.A.K. van Benthem,et al.  Modal logic and classical logic , 1983 .

[38]  Ewa Orlowska,et al.  A relational formalisation of a generic many—valued modal logic , 2001 .

[39]  Ewa Orlowska,et al.  A Calculus of Typed Relations , 2003, RelMiCS.

[40]  Frank Wolter,et al.  Semi-qualitative Reasoning about Distances: A Preliminary Report , 2000, JELIA.

[41]  Dov M. Gabbay,et al.  Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.

[42]  Harold Simmons,et al.  The Monotonous Elimination of Predicate Variables , 1994, J. Log. Comput..

[43]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic , 2002 .

[44]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .