Quantifier Elimination in Elementary Set Theory
暂无分享,去创建一个
[1] J. Łoś. Un théorème sur les superpositions des fonctions définies dans les ensembles arbitraires , 1950 .
[2] Andrzej Skowron,et al. Rough-Neural Computing: Techniques for Computing with Words , 2004, Cognitive Technologies.
[3] Andrzej Szałas,et al. On a static verification of integrity constraints in relational databases , 2001 .
[4] A. Szałas,et al. A Fixpoint Approach to Second-Order Quantifier Elimination with Applications to Correspondence Theory , 1999 .
[5] Alberto Policriti,et al. Rasiowa-Sikorski Style Relational Elementary Set Theory , 2003, RelMiCS.
[6] Andrzej Szalas. Second-Order Quantifier Elimination in Modal Contexts , 2002, JELIA.
[7] Ewa Orlowska,et al. Dynamic logic with program specifications and its relational proof system , 1993, J. Appl. Non Class. Logics.
[8] W. Ackermann. Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .
[9] Stéphane Demri,et al. Logical Analysis of Demonic Nondeterministic Programs , 1996, Theor. Comput. Sci..
[10] Andrzej Szałas,et al. On a Static Approach to Verification of Integrity Constraints in Relational Databases , 2001 .
[11] A. Arnold,et al. Rudiments of μ-calculus , 2001 .
[12] Andrzej Szalas. On an Automated Translation of Modal Proof Rules into Formulas of the Classical Logic , 1994, J. Appl. Non Class. Logics.
[13] H. Rasiowa,et al. Logic at work : essays dedicated to the memory of Helena Rasiowa , 1999 .
[14] Angelo Montanari,et al. A set-theoretic translation method for polymodal logics , 2004, Journal of Automated Reasoning.
[15] Vladimir Lifschitz,et al. Computing Circumscription , 1985, IJCAI.
[16] Andrzej Sza Las. On Correspondence Between Modal and Classical Logic: Automated Approach , 1992 .
[17] Patrick Doherty,et al. Computing Circumscription Revisited: Preliminary Report , 1995, IJCAI.
[18] Ewa Orlowska. Relational Formalisation of Nonclassical Logics , 1997, Relational Methods in Computer Science.
[19] Ivo Düntsch,et al. A Proof System for Contact Relation Algebras , 2000, J. Philos. Log..
[20] Ewa Orlowska,et al. Relational Semantics for Nonclassical Logics: Formulas are Relations , 1994 .
[21] Patrick Doherty,et al. Declarative PTIME Queries for Relational Databases using Quantifier Elimination , 1999, J. Log. Comput..
[22] Ewa Orlowska,et al. Relational proof system for relevant logics , 1992, Journal of Symbolic Logic.
[23] Ewa Orlowska,et al. Correspondence Results for Relational Proof Systems with Application to the Lambek Calculus , 2002, Stud Logica.
[24] J.F.A.K. van Benthem,et al. Modal Correspondence Theory , 1977 .
[25] Patrick Doherty,et al. Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.
[26] E. Orlowska. Relational interpretation of modal logics , 1988 .
[27] Andrzej Szałas,et al. ELIMINATION OF PREDICATE QUANTIFIERS , 1999 .
[28] Uwe Reyle,et al. Logic, Language and Reasoning , 1999 .
[29] Patrick Doherty,et al. Computing Strongest Necessary and Weakest Sufficient Conditions of First-Order Formulas , 2001, IJCAI.
[30] Patrick Doherty,et al. Using Contextually Closed Queries for Local Closed-World Reasoning in Rough Knowledge Databases , 2004, Rough-Neural Computing: Techniques for Computing with Words.
[31] Ewa Orlowska,et al. Relational Methods for Computer Science Applications , 2001 .
[32] Ewa Orlowska,et al. Relational Proof Systems for Modal Logics , 1996 .
[33] Andrzej Szalas. On the Correspondence between Modal and Classical Logic: An Automated Approach , 1993, J. Log. Comput..
[34] Marcelo F. Frias,et al. A proof system for fork algebras and its applications to reasoning in logics based on intuitionism , 1995 .
[35] Georg Struth,et al. Relational and Kleene-Algebraic Methods in Computer Science , 2003, Lecture Notes in Computer Science.
[36] A. Szałas. On a Logical Approach to Estimating Computational Complexity of Potentially Intractable Problems , 2003, FCT.
[37] J.F.A.K. van Benthem,et al. Modal logic and classical logic , 1983 .
[38] Ewa Orlowska,et al. A relational formalisation of a generic many—valued modal logic , 2001 .
[39] Ewa Orlowska,et al. A Calculus of Typed Relations , 2003, RelMiCS.
[40] Frank Wolter,et al. Semi-qualitative Reasoning about Distances: A Preliminary Report , 2000, JELIA.
[41] Dov M. Gabbay,et al. Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.
[42] Harold Simmons,et al. The Monotonous Elimination of Predicate Variables , 1994, J. Log. Comput..
[43] Dov M. Gabbay,et al. Handbook of Philosophical Logic , 2002 .
[44] A. Tarski. A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .