Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers.

Frequency-comb-assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this Letter, we present a novel method using cascaded frequency agile diode lasers, which allows us to extend the measurement bandwidth to 37.4 THz (1355-1630 nm) at megahertz resolution with scanning speeds above 1 THz/s. It is demonstrated as a useful tool to characterize a broadband spectrum for molecular spectroscopy, and in particular it enables us to characterize the dispersion of integrated microresonators up to the 4th-order.

[1]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[2]  K. Vahala,et al.  Broadband dispersion-engineered microresonator on a chip , 2015, Nature Photonics.

[3]  Thomas Udem,et al.  Cavity-enhanced dual-comb spectroscopy , 2009, 0908.1928.

[4]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[5]  Wei C. Jiang,et al.  Dispersion Engineering of High-Q Silicon Microresonators via Thermal Oxidation - Postprint , 2014, 1405.1224.

[6]  S. L. Gilbert,et al.  Pressure-induced shift and broadening of 1560–1630-nm carbon monoxide wavelength-calibration lines , 2002 .

[7]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[8]  M. Lipson,et al.  Bandwidth shaping of microresonator-based frequency combs via dispersion engineering. , 2014, Optics letters.

[9]  M. Gorodetsky,et al.  Mode spectrum and temporal soliton formation in optical microresonators. , 2013, Physical review letters.

[10]  K. Vahala,et al.  Sideband spectroscopy and dispersion measurement in microcavities. , 2012, Optics express.

[11]  D. Preston Doppler-free saturated absorption: Laser spectroscopy , 1996 .

[12]  S. Diddams,et al.  Phase steps and resonator detuning measurements in microresonator frequency combs , 2014, Nature Communications.

[13]  Julien Mandon,et al.  Fourier transform spectroscopy with a laser frequency comb , 2009 .

[14]  Jun Ye,et al.  Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs. , 2005, Optics express.

[15]  A. Nishiyama,et al.  Precise frequency measurement and characterization of a continuous scanning single-mode laser with an optical frequency comb. , 2014, Optics letters.

[16]  Laura C Sinclair,et al.  Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements. , 2013, Optics letters.

[17]  A. Nishiyama,et al.  High resolution molecular spectroscopic system assisted by an optical frequency comb , 2013 .

[18]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[19]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[20]  Vladimir S. Ilchenko,et al.  Rayleigh scattering in high-Q microspheres , 2000 .

[21]  T. C. Briles,et al.  Optical frequency comb spectroscopy. , 2011, Faraday discussions.

[22]  Andrew G. Glen,et al.  APPL , 2001 .

[23]  Kerry J. Vahala,et al.  Soliton frequency comb at microwave rates in a high-Q silica microresonator , 2015 .

[24]  I. Coddington,et al.  Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance. , 2014, Optics express.

[25]  Enrico Rubiola,et al.  Phase noise of whispering gallery photonic hyper-parametric microwave oscillators. , 2008, Optics express.

[26]  O. Sakai,et al.  Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser , 2012 .

[27]  M. Gorodetsky,et al.  Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion , 2009, 0907.0143.

[28]  A. Schliesser,et al.  Complete characterization of a broadband high-finesse cavity using an optical frequency comb. , 2006, Optics express.

[29]  Tobias Herr,et al.  Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition. , 2012, Optics express.

[30]  T. Kippenberg,et al.  Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[31]  Maxim Karpov,et al.  Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[32]  T. Kippenberg,et al.  Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics , 2015, 1511.05716.

[33]  Esther Baumann,et al.  Fast high-resolution spectroscopy of dynamic continuous-wave laser sources , 2010 .

[34]  S. Coen,et al.  Observation of dispersive-wave emission by temporal cavity solitons , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[35]  D. Skryabin,et al.  Soliton families and resonant radiation in a micro-ring resonator near zero group-velocity dispersion. , 2014, Optics express.

[36]  Zach DeVito,et al.  Opt , 2017 .

[37]  V. Brasch,et al.  Photonic chip–based optical frequency comb using soliton Cherenkov radiation , 2014, Science.

[38]  Cai,et al.  Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system , 2000, Physical review letters.

[39]  T. Kippenberg,et al.  Microresonator-Based Optical Frequency Combs , 2011, Science.