The Virtual Element Method for Eigenvalue Problems with Potential Terms on Polytopic Meshes

We extend the conforming virtual element method (VEM) to the numerical resolution of eigenvalue problems with potential terms on a polytopic mesh. An important application is that of the Schrödinger equation with a pseudopotential term. This model is a fundamental element in the numerical resolution of more complex problems from the Density Functional Theory. The VEM is based on the construction of the discrete bilinear forms of the variational formulation through certain polynomial projection operators that are directly computable from the degrees of freedom. The method shows a great flexibility with respect to the meshes and provides a correct spectral approximation with optimal convergence rates. This point is discussed from both the theoretical and the numerical viewpoint. The performance of the method is numerically investigated by solving the quantum harmonic oscillator problem with the harmonic potential and a singular eigenvalue problem with zero potential for the first eigenvalues.

[1]  L. Beirao da Veiga,et al.  Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.

[2]  Peter Wriggers,et al.  A virtual element method for contact , 2016 .

[3]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[4]  David Mora,et al.  A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem , 2016, Comput. Math. Appl..

[5]  Glaucio H. Paulino,et al.  Some basic formulations of the virtual element method (VEM) for finite deformations , 2017 .

[6]  L. Beirao da Veiga,et al.  The Virtual Element Method with curved edges , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.

[7]  John E. Pask,et al.  Partition of unity finite element method for quantum mechanical materials calculations , 2016, 1611.00731.

[8]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[9]  Morten Hjorth-Jensen Eigenvalue Problems , 2021, Explorations in Numerical Analysis.

[10]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[11]  Lourenço Beirão da Veiga,et al.  A virtual element method for the acoustic vibration problem , 2016, Numerische Mathematik.

[12]  Ilaria Perugia,et al.  Non-conforming Harmonic Virtual Element Method: $$h$$h- and $$p$$p-Versions , 2018, J. Sci. Comput..

[13]  J. Pask,et al.  Finite element methods in ab initio electronic structure calculations , 2005 .

[14]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .

[15]  Giuseppe Vacca,et al.  Virtual Element Methods for hyperbolic problems on polygonal meshes , 2016, Comput. Math. Appl..

[16]  David Mora,et al.  A virtual element method for the vibration problem of Kirchhoff plates , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.

[17]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[18]  Gianmarco Manzini,et al.  Convergence of the mimetic finite difference method for eigenvalue problems in mixed form , 2011 .

[19]  K. Lipnikov,et al.  The nonconforming virtual element method , 2014, 1405.3741.

[20]  P. F. Antonietti,et al.  The fully nonconforming virtual element method for biharmonic problems , 2016, 1611.08736.

[21]  John E. Pask,et al.  Partition-of-unity finite-element method for large scale quantum molecular dynamics on massively parallel computational platforms , 2011 .

[22]  John E. Pask,et al.  Classical and enriched finite element formulations for Bloch‐periodic boundary conditions , 2009 .

[23]  R. Dreizler,et al.  Density-Functional Theory , 1990 .

[24]  L. B. D. Veiga,et al.  A virtual element method with arbitrary regularity , 2014 .

[25]  Giuseppe Vacca,et al.  Virtual Elements for the Navier-Stokes Problem on Polygonal Meshes , 2017, SIAM J. Numer. Anal..

[26]  L. Beirao da Veiga,et al.  Basic principles of hp virtual elements on quasiuniform meshes , 2015, 1508.02242.

[27]  Zhaojun Bai,et al.  Hybrid preconditioning for iterative diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure calculations , 2013, J. Comput. Phys..

[28]  Franco Dassi,et al.  High-order Virtual Element Method on polyhedral meshes , 2017, Comput. Math. Appl..

[29]  J. Pask,et al.  Finite-element methods in electronic-structure theory , 2001 .

[30]  David Mora,et al.  A virtual element method for the transmission eigenvalue problem , 2018, Mathematical Models and Methods in Applied Sciences.

[31]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[32]  Tosio Kato Perturbation theory for linear operators , 1966 .

[33]  Gianmarco Manzini,et al.  The NonConforming Virtual Element Method for the Stokes Equations , 2016, SIAM J. Numer. Anal..

[34]  Gianmarco Manzini,et al.  Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.

[35]  Gabriel N. Gatica,et al.  A mixed virtual element method for the pseudostress–velocity formulation of the Stokes problem , 2017 .

[36]  Gianmarco Manzini,et al.  The nonconforming Virtual Element Method for eigenvalue problems , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.

[37]  P. F. Antonietti,et al.  A multigrid algorithm for the $p$-version of the Virtual Element Method , 2017, 1703.02285.

[38]  Lorenzo Mascotto,et al.  Exponential convergence of the hp virtual element method in presence of corner singularities , 2017, Numerische Mathematik.

[39]  Francesca Gardini,et al.  Virtual element method for second-order elliptic eigenvalue problems , 2016, 1610.03675.

[40]  S. de Miranda,et al.  A stress/displacement Virtual Element method for plane elasticity problems , 2017, 1702.01702.

[41]  L. Mascotto,et al.  Exploring high-order three dimensional virtual elements: Bases and stabilizations , 2017, Comput. Math. Appl..

[42]  G. Vacca An H1-conforming virtual element for Darcy and Brinkman equations , 2017 .

[43]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[44]  P. Grisvard,et al.  Singularities in Boundary Value Problems and Exact Controllability of Hyperbolic Systems , 1992 .

[45]  Felipe Lepe,et al.  A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges , 2015, Journal of Scientific Computing.

[46]  R. Bader,et al.  A quantum theory of molecular structure and its applications , 1991 .

[47]  Gianmarco Manzini,et al.  Hourglass stabilization and the virtual element method , 2015 .

[48]  Alessandro Russo,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.

[49]  Gianmarco Manzini,et al.  Residual a posteriori error estimation for the Virtual Element Method for elliptic problems , 2015 .

[50]  Simone Scacchi,et al.  A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..

[51]  Warren E. Pickett,et al.  Pseudopotential methods in condensed matter applications , 1989 .

[52]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[53]  Franco Dassi,et al.  Virtual Element approximation of 2D magnetostatic problems , 2017 .

[54]  Gianmarco Manzini,et al.  The Mimetic Finite Difference Method for Elliptic Problems , 2014 .

[55]  Franco Dassi,et al.  Serendipity Virtual Elements for General Elliptic Equations in Three Dimensions , 2018 .

[56]  Gianmarco Manzini,et al.  Arbitrary-Order Nodal Mimetic Discretizations of Elliptic Problems on Polygonal Meshes , 2011, SIAM J. Numer. Anal..

[57]  Stefano Berrone,et al.  A hybrid mortar virtual element method for discrete fracture network simulations , 2016, J. Comput. Phys..