Optimizing ion-cyclotron resonance frequency heating for ITER: dedicated JET experiments

The original paper was erroneously published with preliminary versions of some figures. The final versions of affected figures are given in the PDF.

[1]  I. Voitsekhovitch,et al.  Fast ions in mode conversion heating (3He)–H plasmas in JET , 2012 .

[2]  Z. Vizvary,et al.  Heat loads on JET plasma facing components from ICRF and LH wave absorption in the SOL , 2011 .

[3]  F. Castejón,et al.  Calculation of the bootstrap current profile for the TJ-II stellarator , 2011, 1108.3721.

[4]  A. M. Messiaen,et al.  ICRH antenna coupling physics and optimum plasma edge density profile. Application to ITER , 2011 .

[5]  Daniele Milanesio,et al.  ITER ICRF antenna analysis and optimization using the TOPICA code , 2010 .

[6]  Daniele Milanesio,et al.  Performance of the ITER ICRH system as expected from TOPICA and ANTITER II modelling , 2010 .

[7]  J. Contributors,et al.  Operations of the External Conjugate‐T Matching System for the A2 ICRH Antennas at JET , 2009 .

[8]  F. C. Schüller,et al.  Status of the ITER IC H&CD System , 2009 .

[9]  R. Neu,et al.  Interaction of ICRF fields with the plasma boundary in AUG and JET and guidelines for antenna optimization , 2009 .

[10]  Jet Efda Contributors,et al.  Overview on Experiments On ITER‐like Antenna On JET And ICRF Antenna Design For ITER , 2009 .

[11]  J. Contributors,et al.  Recent experiments on alternative dipole phasing with the JET A2 ICRF antennas , 2009 .

[12]  R. Felton,et al.  JET (3He)–D scenarios relying on RF heating: survey of selected recent experiments , 2009 .

[13]  Jet Efda Contributors,et al.  Improved break-in-slope analysis of the plasma energy response in tokamaks , 2008 .

[14]  Jet Efda Contributors,et al.  Hybrid Couplers On The JET ICRF System: Commissioning And First Results on ELMs , 2007 .

[15]  Richard Howell Goulding,et al.  Main design features and challenges of the ITER-like ICRF antenna for JET , 2005 .

[16]  M. Brambilla,et al.  Influence of an evanescence layer in front of the antenna on the coupling efficiency of ion cyclotron waves , 2005 .

[17]  W. Suttrop,et al.  Electron cyclotron emission radiometer upgrade on the Joint European Torus (JET) tokamak , 2004 .

[18]  E. Joffrin,et al.  Localized bulk electron heating with ICRF mode conversion in the JET tokamak , 2004 .

[19]  M-L Mayoral,et al.  Controlling the profile of ion-cyclotron-resonant ions in JET with the wave-induced pinch effect. , 2002, Physical review letters.

[20]  D. Van Eester,et al.  Re-evaluation of ITER ion cyclotron operating scenarios , 2002 .

[21]  ITER relevant ICRF heating scenarios with large ion heating fraction , 2000 .

[22]  D. J. Campbell,et al.  Chapter 1: Overview and summary , 1999 .

[23]  Jean-Marie Noterdaeme,et al.  ELMs and sawteeth with ICRF heating on ASDEX Upgrade , 1999 .

[24]  W. Kerner,et al.  Plasma confinement in JET H?mode plasmas with H, D, DT and T isotopes , 1999 .

[25]  L. Horton,et al.  Bulk ion heating with ICRH in JET DT plasmas , 1999 .

[26]  D. V. Eester,et al.  A variational principle for studying fast-wave mode conversion , 1998 .

[27]  A. S. Kaye,et al.  Present and future JET ICRF antennae , 1994 .

[28]  M. V. Hellermann,et al.  Visible charge exchange spectroscopy at JET , 1990 .

[29]  ICRF power-deposition profiles, heating and confinement of monster sawtooth and peaked-density profile discharges in JET , 1989 .

[30]  F. W. Perkins,et al.  Radiofrequency sheaths and impurity generation by ICRF antennas , 1989 .

[31]  Litwin Ion-cyclotron-frequency stabilization of internal kink mode and sawtooth oscillations in tokamaks. , 1988, Physical review letters.

[32]  F. W. Perkins,et al.  Heating tokamaks via the ion-cyclotron and ion-ion hybrid resonances , 1977 .