Adaptive weighted non-parametric background model for efficient video coding

Dynamic background frame based video coding using mixture of Gaussian (MoG) based background modelling has achieved better rate distortion performance compared to the H.264 standard. However, they suffer from high computation time, low coding efficiency for dynamic videos, and prior knowledge requirement of video content. In this paper, we introduce the application of the non-parametric (NP) background modelling approach for video coding domain. We present a novel background modelling technique, called weighted non-parametric (WNP) which balances the historical trend and the recent value of the pixel intensities adaptively based on the content and characteristics of any particular video. WNP is successfully embedded into the latest HEVC video coding standard for better rate-distortion performance. Moreover, a novel scene adaptive non-parametric (SANP) technique is also developed to handle video sequences with high dynamic background. Being non-parametric, the proposed techniques naturally exhibit superior performance in dynamic background modelling without a priori knowledge of video data distribution.

[1]  Keshab K. Parhi,et al.  Semiblind frequency-domain timing synchronization and channel estimation for OFDM systems , 2013, EURASIP J. Adv. Signal Process..

[2]  Bu-Sung Lee,et al.  Explore and Model Better I-Frames for Video Coding , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[3]  Ajay Luthra,et al.  Overview of the H.264/AVC video coding standard , 2003, IEEE Trans. Circuits Syst. Video Technol..

[4]  Wen Gao,et al.  Dual Frame Motion Compensation With Optimal Long-Term Reference Frame Selection and Bit Allocation , 2010, IEEE Transactions on Circuits and Systems for Video Technology.

[5]  Pingkun Yan,et al.  Sparse coding for image denoising using spike and slab prior , 2013, Neurocomputing.

[6]  Bernd Girod,et al.  Background extraction and long-term memory motion-compensated prediction for spatial-random-access-enabled video coding , 2009, 2009 Picture Coding Symposium.

[7]  Bu-Sung Lee,et al.  McFIS: Better I-frame for video coding , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[8]  Jie Zhao,et al.  McFIS in hierarchical bipredictve pictures-based video coding for referencing the stable area in a scene , 2011, ICIP 2011.

[9]  Jar-Ferr Yang,et al.  Adaptive group-of-pictures and scene change detection methods based on existing H.264 advanced video coding information , 2008 .

[10]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[11]  Zhi Liu,et al.  An Adaptive and Fast Multiframe Selection Algorithm for H.264 Video Coding , 2007, IEEE Signal Processing Letters.

[12]  Dar-Shyang Lee,et al.  Effective Gaussian mixture learning for video background subtraction , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Thomas Sikora,et al.  Trends and Perspectives in Image and Video Coding , 2005, Proceedings of the IEEE.

[14]  Bu-Sung Lee,et al.  Video coding with dynamic background , 2013, EURASIP J. Adv. Signal Process..

[15]  Liang-Gee Chen,et al.  Analysis and complexity reduction of multiple reference frames motion estimation in H.264/AVC , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[16]  Yulong Wang,et al.  Sparse Coding From a Bayesian Perspective , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[17]  Bu-Sung Lee,et al.  Video coding using the most common frame in scene , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[18]  Ahmed M. Elgammal Background Subtraction: Theory and Practice , 2014, Background Subtraction: Theory and Practice.

[19]  Dietmar Hepper,et al.  Efficiency analysis and application of uncovered background prediction in a low bit rate image coder , 1990, IEEE Trans. Commun..

[20]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[21]  L. Davis,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.

[22]  Thomas Sikora,et al.  Extending H.264/AVC with a background sprite prediction mode , 2008, 2008 15th IEEE International Conference on Image Processing.

[23]  Manoranjan Paul,et al.  Improved Gaussian mixtures for robust object detection by adaptive multi-background generation , 2008, 2008 19th International Conference on Pattern Recognition.

[24]  Qionghai Dai,et al.  Background-frame based motion compensation for video compression , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[25]  Bu-Sung Lee,et al.  Direct Intermode Selection for H.264 Video Coding Using Phase Correlation , 2011, IEEE Transactions on Image Processing.

[26]  Xianguo Zhang,et al.  A Fast and Performance-Maintained Transcoding Method Based on Background Modeling for Surveillance Video , 2012, 2012 IEEE International Conference on Multimedia and Expo.

[27]  O. Patrouix,et al.  Dynamic Background Segmentation for Remote Reference Image Updating within Motion Detection JPEG2000 , 2006, 2006 IEEE International Symposium on Industrial Electronics.

[28]  Bu-Sung Lee,et al.  Pattern-based video coding with dynamic background modeling , 2013, EURASIP J. Adv. Signal Process..

[29]  Liang-Gee Chen,et al.  Efficient moving object segmentation algorithm using background registration technique , 2002, IEEE Trans. Circuits Syst. Video Technol..

[30]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[31]  Miki Haseyama,et al.  Improvement of video coding efficiency based on sparse contractive mapping approach , 2016, Neurocomputing.

[32]  Tien-Ying Kuo,et al.  Efficient Reference Frame Selector for H.264 , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[33]  Gary J. Sullivan,et al.  Overview of the High Efficiency Video Coding (HEVC) Standard , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[34]  Patrick Garda,et al.  Accelerating the multiple reference frames compensation in the H.264 video coder , 2009, Journal of Real-Time Image Processing.