Likelihood Ratio-Based Biometric Score Fusion

Multibiometric systems fuse information from different sources to compensate for the limitations in performance of individual matchers. We propose a framework for the optimal combination of match scores that is based on the likelihood ratio test. The distributions of genuine and impostor match scores are modeled as finite Gaussian mixture model. The proposed fusion approach is general in its ability to handle 1) discrete values in biometric match score distributions, 2) arbitrary scales and distributions of match scores, 3) correlation between the scores of multiple matchers, and 4) sample quality of multiple biometric sources. Experiments on three multibiometric databases indicate that the proposed fusion framework achieves consistently high performance compared to commonly used score fusion techniques based on score transformation and classification.

[1]  Xudong Jiang,et al.  Exploiting global and local decisions for multimodal biometrics verification , 2004, IEEE Transactions on Signal Processing.

[2]  Samy Bengio,et al.  Improving Fusion with Margin-Derived Confidence in Biometric Authentication Tasks , 2005, AVBPA.

[3]  Craig I. Watson,et al.  Fingerprint Vendor Technology Evaluation 2003: Summary of Results and Analysis Report , 2004 .

[4]  Samy Bengio,et al.  Database, protocols and tools for evaluating score-level fusion algorithms in biometric authentication , 2006, Pattern Recognit..

[5]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Bojan Cukic,et al.  A Classification Approach to Multi-biometric Score Fusion , 2005, AVBPA.

[7]  John P. Baker,et al.  Fusion of Biometric Data with Quality Estimates via a Bayesian Belief Network , 2005 .

[8]  Andrew R. Barron,et al.  Mixture Density Estimation , 1999, NIPS.

[9]  Roberto Brunelli,et al.  Person identification using multiple cues , 1995, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[11]  Craig I. Watson,et al.  Studies of biometric fusion , 2006 .

[12]  Anil K. Jain,et al.  Decision-Level Fusion in Fingerprint Verification , 2001, Multiple Classifier Systems.

[13]  Wei-Yun Yau,et al.  Fusion of Auxiliary Information for Multi-modal Biometrics Authentication , 2004, ICBA.

[14]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[15]  Arun Ross,et al.  Handbook of Multibiometrics , 2006, The Kluwer international series on biometrics.

[16]  Anil K. Jain,et al.  Large-scale evaluation of multimodal biometric authentication using state-of-the-art systems , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Arun Ross,et al.  Score normalization in multimodal biometric systems , 2005, Pattern Recognit..

[18]  Julian Fiérrez,et al.  Rapid and brief communication: Discriminative multimodal biometric authentication based on quality measures , 2005 .

[19]  D. Panchenko,et al.  Risk bounds for mixture density estimation , 2005 .

[20]  Anil K. Jain,et al.  Quality-based Score Level Fusion in Multibiometric Systems , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[21]  Stephen E. Fienberg,et al.  Testing Statistical Hypotheses , 2005 .

[22]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..