A High Performance Ceramic-Polymer Separator for Lithium Batteries

[1]  Yunchao Li,et al.  Alumina/Phenolphthalein Polyetherketone Ceramic Composite Polypropylene Separator Film for Lithium Ion Power Batteries , 2015 .

[2]  G. Sanjeev,et al.  Lithium aluminate-based ceramic membranes as separators for lithium-ion batteries , 2015 .

[3]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[4]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[5]  Kevin G. Gallagher,et al.  Quantifying the promise of lithium–air batteries for electric vehicles , 2014 .

[6]  S. Lanceros‐Méndez,et al.  Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications , 2013 .

[7]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[8]  S. Lanceros‐Méndez,et al.  Microporous membranes of NaY zeolite/poly(vinylidene fluoride-trifluoroethylene) for Li-ion battery separators , 2013 .

[9]  Senentxu Lanceros-Méndez,et al.  Porous Membranes of Montmorillonite/Poly(vinylidene fluoride-trifluorethylene) for Li-Ion Battery Separators , 2012 .

[10]  Zhan Lin,et al.  Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators , 2011 .

[11]  Dong-Won Kim,et al.  Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries , 2010 .

[12]  Dong‐Won Kim,et al.  Cycling performance of lithium-ion batteries assembled with a hybrid composite membrane prepared by an electrospinning method , 2010 .

[13]  K. M. Abraham,et al.  A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery (Postprint) , 2010 .

[14]  B. Kumar,et al.  Development of membranes and a study of their interfaces for rechargeable lithium–air battery , 2009 .

[15]  M. Armand,et al.  Ceramic-in-polymer versus polymer-in-ceramic polymeric electrolytes—A novel approach , 2009 .

[16]  Binod Kumar,et al.  Space-Charge-Mediated Superionic Transport in Lithium Ion Conducting Glass–Ceramics , 2009 .

[17]  Tao Zhang,et al.  Lithium anode for lithium-air secondary batteries , 2008 .

[18]  J. Whitacre,et al.  Chemical stability enhancement of lithium conducting solid electrolyte plates using sputtered LiPON thin films , 2004 .

[19]  Makoto Ue,et al.  Effect of vinylene carbonate as additive to electrolyte for lithium metal anode , 2004 .

[20]  Y. Sadaoka,et al.  Ionic Conductivity of the Lithium Titanium Phosphate ( Li1 + X M X Ti2 − X ( PO 4 ) 3 , M = Al , Sc , Y , and La ) Systems , 1989 .