Distributed secrecy in multilevel wireless networks

Secrecy is a key enabler for various wireless applications in which distributed confidential information is communicated in a multilevel network from sources to destinations. Network secrecy can be accomplished by exploiting the intrinsic properties of multilevel wireless networks (MWNs). This paper introduces the concept of distributed network secrecy (DNS) and develops a framework for design and analysis of confidential MWNs. Our framework accounts for node distribution, network configuration, propagation medium, and communication protocol. This research offers the foundation of DNS and quantifies the impact of network configuration on DNS for self-organizing MWNs.

[1]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[2]  Martin E. Hellman,et al.  A note on Wyner's wiretap channel (Corresp.) , 1977, IEEE Trans. Inf. Theory.

[3]  R. Negi,et al.  Secret communication in presence of colluding eavesdroppers , 2005, MILCOM 2005 - 2005 IEEE Military Communications Conference.

[4]  Hyundong Shin,et al.  Secure node packing of large-scale wireless networks , 2012, 2012 IEEE International Conference on Communications (ICC).

[5]  Martin E. Hellman,et al.  The Gaussian wire-tap channel , 1978, IEEE Trans. Inf. Theory.

[6]  Hyundong Shin,et al.  Cognitive Network Interference , 2011, IEEE Journal on Selected Areas in Communications.

[7]  Moe Z. Win,et al.  Percolation and Connectivity in the Intrinsically Secure Communications Graph , 2012, IEEE Transactions on Information Theory.

[8]  Moe Z. Win,et al.  A Mathematical Theory of Network Interference and Its Applications , 2009, Proceedings of the IEEE.

[9]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[10]  Moe Z. Win,et al.  The role of aggregate interference on intrinsic network secrecy , 2012, 2012 IEEE International Conference on Communications (ICC).

[11]  Rohit Negi,et al.  Guaranteeing Secrecy using Artificial Noise , 2008, IEEE Transactions on Wireless Communications.

[12]  Zhu Han,et al.  Network formation games for wireless multi-hop networks in the presence of eavesdroppers , 2009, 2009 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[13]  Zhu Han,et al.  Improving Wireless Physical Layer Security via Cooperating Relays , 2010, IEEE Transactions on Signal Processing.

[14]  Martin Haenggi The secrecy graph and some of its properties , 2008, 2008 IEEE International Symposium on Information Theory.

[15]  Roberto Verdone,et al.  Probability distributions for the number of radio transceivers in a hot spot with an application to the evaluation of blocking probabilities , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[16]  Hesham El Gamal,et al.  The Relay–Eavesdropper Channel: Cooperation for Secrecy , 2006, IEEE Transactions on Information Theory.

[17]  Jeffrey G. Andrews,et al.  Spectrum-Sharing Transmission Capacity , 2011, IEEE Transactions on Wireless Communications.

[18]  Mohamed-Slim Alouini,et al.  Digital Communication over Fading Channels: Simon/Digital Communications 2e , 2004 .

[19]  H. Vincent Poor,et al.  Multiple-Access Channels With Confidential Messages , 2008, IEEE Transactions on Information Theory.

[20]  John Orriss,et al.  Probability distributions for the number of radio transceivers which can communicate with one another , 2003, IEEE Trans. Commun..

[21]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[22]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas—Part II: The MIMOME Wiretap Channel , 2007, IEEE Transactions on Information Theory.

[23]  Shlomo Shamai,et al.  Secure Communication Over Fading Channels , 2007, IEEE Transactions on Information Theory.

[24]  Andrea Conti,et al.  Mathematical Evaluation of Environmental Monitoring Estimation Error through Energy-Efficient Wireless Sensor Networks , 2007, IEEE Transactions on Mobile Computing.

[25]  Jeffrey G. Andrews,et al.  Secure Wireless Network Connectivity with Multi-Antenna Transmission , 2011, IEEE Transactions on Wireless Communications.

[26]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.

[27]  Moe Z. Win,et al.  Optimized simple bounds for diversity systems , 2009, IEEE Transactions on Communications.

[28]  Gregory J. Pottie,et al.  Instrumenting the world with wireless sensor networks , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).