An adaptive cut‐cell method for environmental fluid mechanics

In this work we present a numerical method for solving the incompressible Navier–Stokes equations in an environmental fluid mechanics context. The method is designed for the study of environmental flows that are multiscale, incompressible, variable-density, and within arbitrarily complex and possibly anisotropic domains. The method is new because in this context we couple the embedded-boundary (or cut-cell) method for complex geometry with block-structured adaptive mesh refinement (AMR) while maintaining conservation and second-order accuracy. The accurate simulation of variable-density fluids necessitates special care in formulating projection methods. This variable-density formulation is well known for incompressible flows in unit-aspect ratio domains, without AMR, and without complex geometry, but here we carefully present a new method that addresses the intersection of these issues. The methodology is based on a second-order-accurate projection method with high-order-accurate Godunov finite-differencing, including slope limiting and a stable differencing of the nonlinear convection terms. The finite-volume AMR discretizations are based on two-way flux matching at refinement boundaries to obtain a conservative method that is second-order accurate in solution error. The control volumes are formed by the intersection of the irregular embedded boundary with Cartesian grid cells. Unlike typical discretization methods, these control volumes naturally fit within parallelizable, disjoint-block data structures, and permit dynamic AMR coarsening and refinement as the simulation progresses. We present two- and three-dimensional numerical examples to illustrate the accuracy of the method. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  Da‐Lin Zhang,et al.  A two-way interactive nesting procedure with variable terrain resolution , 1986 .

[2]  Isidore Rigoutsos,et al.  An algorithm for point clustering and grid generation , 1991, IEEE Trans. Syst. Man Cybern..

[3]  Michael Selwyn Longuet-Higgins,et al.  The deformation of steep surface waves on water - I. A numerical method of computation , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  W. Skamarock,et al.  Adaptive Grid Refinement for Two-Dimensional and Three-Dimensional Nonhydrostatic Atmospheric Flow , 1993 .

[5]  Peter McCorquodale,et al.  A Cartesian grid embedded boundary method for the heat equation on irregular domains , 2001 .

[6]  Richard I. Klein,et al.  An unsplit, cell-centered Godunov method for ideal MHD - eScholarship , 2003 .

[7]  Edward H. Twizell,et al.  Second-order,L0-stable methods for the heat equation with time-dependent boundary conditions , 1996, Adv. Comput. Math..

[8]  E. Puckett,et al.  A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows , 1997 .

[9]  P. Colella,et al.  A fourth-order accurate local refinement method for Poisson's equation , 2005 .

[10]  C. Ross Ethier,et al.  A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations , 2007, J. Comput. Phys..

[11]  J. Bell,et al.  A Second-Order Projection Method for Variable- Density Flows* , 1992 .

[12]  Phillip Colella,et al.  A cartesian grid embedded boundary method for the heat equation and poisson's equation in three dimensions , 2004 .

[13]  Paul Fischer,et al.  An Overlapping Schwarz Method for Spectral Element Solution of the Incompressible Navier-Stokes Equations , 1997 .

[14]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[15]  S. J. Maskell,et al.  Two-Way Interactive Nesting of Primitive Equation Ocean Models with Topography , 1995 .

[16]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[17]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[18]  G. Ivey,et al.  Experiments on mixing due to internal solitary waves breaking on uniform slopes , 1999 .

[19]  Marsha Berger,et al.  Three-Dimensional Adaptive Mesh Refinement for Hyperbolic Conservation Laws , 1994, SIAM J. Sci. Comput..

[20]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[21]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[22]  Phillip Colella,et al.  A limiter for PPM that preserves accuracy at smooth extrema , 2008, J. Comput. Phys..

[23]  John B. Bell,et al.  Approximate Projection Methods: Part I. Inviscid Analysis , 2000, SIAM J. Sci. Comput..

[24]  Robert L. Lee,et al.  A MODIFIED FINITE ELEMENT METHOD FOR SOLVING THE TIME-DEPENDENT, INCOMPRESSIBLE NAVIER-STOKES EQUATIONS. PART 1: THEORY* , 1984 .

[25]  Eckart Meiburg,et al.  Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries , 2000, Journal of Fluid Mechanics.

[26]  Francis X. Giraldo,et al.  A Scalable Spectral Element Eulerian Atmospheric Model (SEE-AM) for NWP: Dynamical Core Tests , 2004 .

[27]  S. Vagle,et al.  Upstream Internal Hydraulic Jumps , 2006 .

[28]  Boyce E. Griffith,et al.  On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems , 2005 .

[29]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[30]  Michael Zingale,et al.  Adaptive low Mach number simulations of nuclear flame microphysics , 2004 .

[31]  J. McWilliams,et al.  Evaluation and application of the ROMS 1-way embedding procedure to the central california upwelling system , 2006 .

[32]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[33]  John B. Bell,et al.  Cartesian grid method for unsteady compressible flow in irregular regions , 1995 .

[34]  G. R. Shubin,et al.  An Adaptive Grid Finite Difference Method for Conservation Laws , 1983 .

[35]  R. LeVeque,et al.  An Adaptive Cartesian Mesh Algorithm for the Euler Equations in Arbitrary Geometries , 1989 .

[36]  S. A. Thorpe,et al.  Recent developments in the study of ocean turbulence. , 2004 .

[37]  W. Munk,et al.  Abyssal recipes II: energetics of tidal and wind mixing , 1998 .

[38]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[39]  P. Colella,et al.  A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains , 1998 .

[40]  Li-Tien Cheng,et al.  A second-order-accurate symmetric discretization of the Poisson equation on irregular domains , 2002 .

[41]  D. Trebotich,et al.  A Projection Method for Incompressible Viscous Flow on a Deformable Domain , 2012 .

[42]  John B. Bell,et al.  An Adaptive Projection Method for Unsteady, Low-Mach Number Combustion , 1998 .

[43]  Phillip Colella,et al.  An anelastic allspeed projection method for gravitationally stratified flows , 2006, J. Comput. Phys..

[44]  John B. Bell,et al.  Performance and scaling of locally-structured grid methods forpartial differential equations , 2007 .

[45]  William J. Rider Filtering non‐solenoidal modes in numerical solutions of incompressible flows , 1998 .

[46]  C. W. Hirt,et al.  A lagrangian method for calculating the dynamics of an incompressible fluid with free surface , 1970 .

[47]  Phillip Colella,et al.  A Cartesian grid embedded boundary method for hyperbolic conservation laws , 2006 .

[48]  K. Lamb Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge , 1994 .

[49]  Jan S. Hesthaven,et al.  A spectral multidomain penalty method model for the simulation of high Reynolds number localized incompressible stratified turbulence , 2005 .

[50]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[51]  Alexandre J. Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .

[52]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[53]  Armi,et al.  The generation and trapping of solitary waves over topography , 1999, Science.

[54]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[55]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[56]  M. Minion,et al.  Two methods for the study of vortex patch evolution on locally refined grids , 1994 .

[57]  John B. Bell,et al.  A projection method for combustion in the zero Mach number limit , 1993 .

[58]  A. Bourlioux,et al.  High-order multi-implicit spectral deferred correction methods for problems of reactive flow , 2003 .

[59]  Traian Iliescu,et al.  Submitted to: Journal of Physical Oceanography , 2022 .

[60]  M. Gerritsen,et al.  An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator , 2006 .

[61]  S. McCormick,et al.  A multigrid tutorial (2nd ed.) , 2000 .

[62]  M. Sussman,et al.  A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows , 2000 .

[63]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[64]  P. Colella,et al.  An Adaptive Level Set Approach for Incompressible Two-Phase Flows , 1997 .

[65]  A. Chorin Numerical study of slightly viscous flow , 1973, Journal of Fluid Mechanics.

[66]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[67]  V E Beckner,et al.  Numerical simulation of a laboratory-scale turbulent V-flame. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Phillip Colella,et al.  A cell-centered adaptive projection method for the incompressible Navier-Stokes equations in three dimensions , 2007, J. Comput. Phys..