Unravelling the Molecular Determinants of Bee Sensitivity to Neonicotinoid Insecticides

[1]  Y. Nomura,et al.  Molecular basis of selective resistance of the bumblebee BiNav1 sodium channel to tau-fluvalinate , 2017, Proceedings of the National Academy of Sciences.

[2]  D. Cressey The bitter battle over the world’s most popular insecticides , 2017, Nature.

[3]  L. Field,et al.  Induced thiacloprid insensitivity in honeybees (Apis mellifera L.) is associated with up‐regulation of detoxification genes , 2016, Insect molecular biology.

[4]  Brian R Johnson,et al.  Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing , 2015, Scientific Reports.

[5]  M. Berenbaum,et al.  Task‐related differential expression of four cytochrome P450 genes in honeybee appendages , 2015, Insect molecular biology.

[6]  M. Berenbaum,et al.  Xenobiotic detoxification pathways in honey bees. , 2015, Current opinion in insect science.

[7]  Erich Bornberg-Bauer,et al.  The genomes of two key bumblebee species with primitive eusocial organization , 2015, Genome Biology.

[8]  Reed M. Johnson Honey bee toxicology. , 2015, Annual review of entomology.

[9]  M. Schwab,et al.  Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. , 2013, Pharmacology & therapeutics.

[10]  Blair D. Siegfried,et al.  Acaricide, Fungicide and Drug Interactions in Honey Bees (Apis mellifera) , 2013, PloS one.

[11]  Isabel Gómez,et al.  Evolution of Bacillus thuringiensis Cry toxins insecticidal activity , 2013, Microbial biotechnology.

[12]  M. Paine,et al.  Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus , 2012, Proceedings of the National Academy of Sciences.

[13]  R. Scheiner,et al.  Suitability of three common reference genes for quantitative real-time PCR in honey bees , 2012, Apidologie.

[14]  M. Berenbaum,et al.  CYP9Q-mediated detoxification of acaricides in the honey bee (Apis mellifera) , 2011, Proceedings of the National Academy of Sciences.

[15]  Andrew J. Crossthwaite,et al.  Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae , 2011, BMC Neuroscience.

[16]  A. Cristino,et al.  Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR , 2008, Apidologie.

[17]  Jeffrey G. Scott,et al.  Is Apis mellifera more sensitive to insecticides than other insects? , 2010, Pest management science.

[18]  S. R. Palli,et al.  A brain-specific cytochrome P450 responsible for the majority of deltamethrin resistance in the QTC279 strain of Tribolium castaneum , 2010, Proceedings of the National Academy of Sciences.

[19]  I. Pichová,et al.  Selection of reference genes for real-time polymerase chain reaction analysis in tissues from Bombus terrestris and Bombus lucorum of different ages. , 2010, Analytical biochemistry.

[20]  M. Gauthier State of the art on insect nicotinic acetylcholine receptor function in learning and memory. , 2010, Advances in experimental medicine and biology.

[21]  J. F. Kenneke,et al.  Mechanistic investigation of the noncytochrome P450-mediated metabolism of triadimefon to triadimenol in hepatic microsomes. , 2008, Chemical research in toxicology.

[22]  N. Perrimon,et al.  Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes , 2008, Nature Genetics.

[23]  May R Berenbaum,et al.  Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. , 2007, Annual review of entomology.

[24]  R. Feyereisen,et al.  Evolution of insect P450. , 2006, Biochemical Society transactions.

[25]  D. Boykin,et al.  CYP4F Enzymes Are the Major Enzymes in Human Liver Microsomes That Catalyze the O-Demethylation of the Antiparasitic Prodrug DB289 [2,5-Bis(4-amidinophenyl)furan-bis-O-methylamidoxime] , 2006, Drug Metabolism and Disposition.

[26]  M. Berenbaum,et al.  A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee , 2006, Insect molecular biology.

[27]  D. Sattelle,et al.  Role in the Selectivity of Neonicotinoids of Insect-Specific Basic Residues in Loop D of the Nicotinic Acetylcholine Receptor Agonist Binding Site , 2006, Molecular Pharmacology.

[28]  J. Schenkman,et al.  Spectral analyses of cytochromes P450. , 2006, Methods in molecular biology.

[29]  J. Brunet,et al.  In vivo metabolic fate of [14C]-acetamiprid in six biological compartments of the honeybee, Apis mellifera L. , 2005, Pest management science.

[30]  L. Belzunces,et al.  In vivo distribution and metabolisation of 14C-imidacloprid in different compartments of Apis mellifera L. , 2004, Pest management science.

[31]  M. Williamson,et al.  Identification of mutations conferring insecticide‐insensitive AChE in the cotton‐melon aphid, Aphis gossypii Glover , 2004, Insect molecular biology.

[32]  J. Ambrose,et al.  Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellife , 2004 .

[33]  R. Schmuck Ecotoxicological profile of the insecticide thiacloprid , 2001 .

[34]  R. Nauen,et al.  Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). , 2001, Pest management science.

[35]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.