Hamiltonian form of the modified nonlinear Schrödinger equation for gravity waves on arbitrary depth

The commonly used forms of the modified nonlinear Schrödinger equations for deep water (Dysthe, Proc. R. Soc. Lond. A, vol. 369, 1979, p. 105) and arbitrary depth (Brinch–Nielsen & Jonsson, Wave Motion, vol. 8, 1986, p. 455) do not conserve momentum and are not Hamiltonian. We show how these equations can be brought into Hamiltonian form, with the action, momentum and Hamiltonian being conserved. We derive the new fourth-order nonlinear Schrödinger equation for arbitrary depth, starting from the Zakharov equation enhanced with the new kernel of Krasitskii (J. Fluid Mech., vol. 272, 1994, p. 1).

[1]  Ljf Lambert Broer On the hamiltonian theory of surface waves , 1974 .

[2]  J. L. Hammack,et al.  Can the Benjamin-Feir instability spawn a rogue wave ? , 2005 .

[3]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[4]  Bruce M. Lake,et al.  Nonlinear Dynamics of Deep-Water Gravity Waves , 1982 .

[5]  Karsten Trulsen,et al.  Can swell increase the number of freak waves in a wind sea? , 2010, Journal of Fluid Mechanics.

[6]  Karsten Trulsen,et al.  A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water , 1996 .

[7]  I. G. Jonsson,et al.  Fourth order evolution equations and stability analysis for Stokes waves on arbitrary water depth , 1986 .

[8]  J. C. Luke A variational principle for a fluid with a free surface , 1967, Journal of Fluid Mechanics.

[9]  D. H. Peregrine,et al.  Water waves, nonlinear Schrödinger equations and their solutions , 1983, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[10]  Vladimir E. Zakharov,et al.  Stability of periodic waves of finite amplitude on the surface of a deep fluid , 1968 .

[11]  Henry C. Yuen,et al.  Evolution of a random inhomogeneous field of nonlinear deep-water gravity waves , 1980 .

[12]  Peter A. E. M. Janssen,et al.  The Intermediate Water Depth Limit of the Zakharov Equation and Consequences for Wave Prediction , 2007 .

[13]  M. Stiassnie,et al.  On Zakharov's kernel and the interaction of non-collinear wavetrains in finite water depth , 2009, Journal of Fluid Mechanics.

[14]  K. Dysthe,et al.  Frequency downshift in three-dimensional wave trains in a deep basin , 1997, Journal of Fluid Mechanics.

[15]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[16]  Michael Stiassnie,et al.  Note on the modified nonlinear Schrödinger equation for deep water waves , 1984 .

[17]  R. Gorman The Treatment of Discontinuities in Computing the Nonlinear Energy Transfer for Finite-Depth Gravity Wave Spectra , 2003 .

[18]  John D. Fenton,et al.  A Fifth‐Order Stokes Theory for Steady Waves , 1985 .

[19]  P. Janssen On some consequences of the canonical transformation in the Hamiltonian theory of water waves , 2009, Journal of Fluid Mechanics.

[20]  Chiang C. Mei,et al.  A numerical study of water-wave modulation based on a higher-order nonlinear Schrödinger equation , 1985, Journal of Fluid Mechanics.

[21]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[22]  Karsten Trulsen,et al.  On weakly nonlinear modulation of waves on deep water , 2000 .

[23]  K. Stewartson,et al.  On three-dimensional packets of surface waves , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  John W. Miles,et al.  On Hamilton's principle for surface waves , 1977, Journal of Fluid Mechanics.

[25]  John W. McLean,et al.  Instabilities of finite-amplitude gravity waves on water of finite depth , 1982, Journal of Fluid Mechanics.

[26]  K. Dysthe,et al.  Note on a modification to the nonlinear Schrödinger equation for application to deep water waves , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[27]  P. Saffman,et al.  Instability and confined chaos in a nonlinear dispersive wave system , 1982 .

[28]  O. Phillips On the dynamics of unsteady gravity waves of finite amplitude Part 1. The elementary interactions , 1960, Journal of Fluid Mechanics.

[29]  About shape of giant breather , 2010 .

[30]  Vladimir P. Krasitskii,et al.  On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves , 1994, Journal of Fluid Mechanics.

[31]  Lev Shemer,et al.  On modifications of the Zakharov equation for surface gravity waves , 1984, Journal of Fluid Mechanics.

[32]  Vladimir E. Zakharov,et al.  Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid , 1999 .

[33]  E. Kuznetsov,et al.  Solitons in a parametrically unstable plasma , 1977 .