Mechanical properties and in vitro cellular behavior of zinc-containing nano-bioactive glass doped biphasic calcium phosphate bone substitutes

[1]  S. Dorozhkin Bioceramics from calcium orthophosphates , 2015 .

[2]  N. Nezafati,et al.  Development of a composite based on hydroxyapatite and magnesium and zinc‐containing sol–gel-derived bioactive glass for bone substitute applications , 2012 .

[3]  Jürgen Groll,et al.  Fiber reinforced calcium phosphate cements -- on the way to degradable load bearing bone substitutes? , 2012, Biomaterials.

[4]  A. Zamanian,et al.  Mechanical and In Vitro Biological Properties of Hydroxyapatite Bioceramics Reinforced with Strontium-Containing Nano-Bioactive Glass , 2012 .

[5]  M. Honda,et al.  Enhanced early osteogenic differentiation by silicon-substituted hydroxyapatite ceramics fabricated via ultrasonic spray pyrolysis route , 2012, Journal of Materials Science: Materials in Medicine.

[6]  Bikramjit Basu,et al.  Functionally graded hydroxyapatite-alumina-zirconia biocomposite: Synergy of toughness and biocompatibility , 2012 .

[7]  F. He,et al.  Osteoblast response to porous titanium surfaces coated with zinc-substituted hydroxyapatite. , 2012, Oral surgery, oral medicine, oral pathology and oral radiology.

[8]  Shu Cai,et al.  In vitro solubility and bioactivity of Sr and Mg co-doped calcium phosphate glass-ceramics derived from different heat-treatment temperatures , 2011 .

[9]  S. Hesaraki,et al.  Structural discrepancies and in vitro nanoapatite formation ability of sol–gel derived glasses doped with different bone stimulator ions , 2011 .

[10]  Edgar Dutra Zanotto,et al.  Gel-derived SiO2–CaO–Na2O–P2O5 bioactive powders: Synthesis and in vitro bioactivity , 2011 .

[11]  M. Alizadeh,et al.  Multi-phase biocomposite material in-situ fabricated by using hydroxyapatite and amorphous nanosilica , 2011 .

[12]  M. Alizadeh,et al.  Physico-chemical and in vitro biological evaluation of strontium/calcium silicophosphate glass , 2010, Journal of materials science. Materials in medicine.

[13]  Y. Catonné,et al.  Clinical, radiological and histological evaluation of biphasic calcium phosphate bioceramic wedges filling medial high tibial valgisation osteotomies. , 2009, The Knee.

[14]  M. Shokrgozar,et al.  Development of beta-tricalcium phosphate/sol-gel derived bioactive glass composites: physical, mechanical, and in vitro biological evaluations. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[15]  A. Zamanian,et al.  Physical and physicochemical evaluation of calcium phosphate cement made using human derived blood plasma , 2009 .

[16]  R. D. Kamachali,et al.  Effect of the addition ZrO2–Al2O3 on nanocrystalline hydroxyapatite bending strength and fracture toughness , 2009 .

[17]  P. Richter,et al.  The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics , 2008, Journal of materials science. Materials in medicine.

[18]  M. Sayer,et al.  Silicon substitution in the calcium phosphate bioceramics. , 2007, Biomaterials.

[19]  T. Smit,et al.  Alkaline phosphatase-induced mineral deposition to anchor collagen fibrils to a solid surface. , 2007, Biomaterials.

[20]  Dario Ghigo,et al.  Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts. , 2007, Chemico-biological interactions.

[21]  L. Morejón-Alonso,et al.  Effect of sterilization on the properties of CDHA-OCP-beta-TCP biomaterial , 2007 .

[22]  A. Ogose,et al.  Osteoinduction with highly purified beta-tricalcium phosphate in dog dorsal muscles and the proliferation of osteoclasts before heterotopic bone formation. , 2006, Biomaterials.

[23]  F. Müller,et al.  Influence of magnesium doping on the phase transformation temperature of beta-TCP ceramics examined by Rietveld refinement. , 2005, Biomaterials.

[24]  M. Bohner,et al.  Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty - an experimental study in sheep. , 2005, Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery.

[25]  J. Planell,et al.  Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement: a kinetic analysis. , 2004, Biomaterials.

[26]  C. Simon,et al.  Strong and bioactive composites containing nano-silica-fused whiskers for bone repair. , 2004, Biomaterials.

[27]  Bushra Parveen,et al.  Preparation and in vitro bioactivity of zinc containing sol-gel-derived bioglass materials. , 2004, Journal of biomedical materials research. Part A.

[28]  P. Chu,et al.  Mechanism of apatite formation on wollastonite coatings in simulated body fluids. , 2004, Biomaterials.

[29]  J. P. LeGeros,et al.  Biphasic calcium phosphate bioceramics: preparation, properties and applications , 2003, Journal of materials science. Materials in medicine.

[30]  Noboru Ichinose,et al.  Zinc-releasing calcium phosphate for stimulating bone formation ☆ , 2002 .

[31]  Y. Suketa,et al.  Stimulatory effect of zinc on bone formation in tissue culture. , 1987, Biochemical pharmacology.

[32]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[33]  S. Best,et al.  Bioactive ceramics: processing, structures and properties , 2011, Journal of Materials Science.

[34]  G. Swennen,et al.  Reconstruction of orbital wall defects with calcium phosphate cement: clinical and histological findings in a sheep model. , 2007, International journal of oral and maxillofacial surgery.

[35]  L. Morejón-Alonso,et al.  Effect of Sterilization on the Properties of CDHA-OCP-β-TCP Biomaterial , 2006 .

[36]  A. Carr,et al.  The sintering and mechanical behavior of hydroxyapatite with bioglass additions , 2001, Journal of materials science. Materials in medicine.