Inhibition of phosphorylation of cellular dUTP nucleotidohydrolase as a consequence of herpes simplex virus infection

During an infection with herpes simplex virus, activity of cellular dUTPase decreases as a function of time, post‐infection, while virus‐encoded dUTPase activity increases. Prelabeling of cells with 35S‐methionine and immunoprecipitation analysis, using monoclonal antibodies, indicates that cellular dUTPase protein levels remain the same (with respect to levels in uninfected cells) throughout the infection period. New synthesis of cellular dUTPase does not occur in infected cells as determined by 35S‐methionine labeling during infection.

[1]  M. Williams,et al.  Herpes simplex virus-induced dUTPase: target site for antiviral chemotherapy. , 1988, Virology.

[2]  L. J. Perry,et al.  The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. , 1988, The Journal of general virology.

[3]  L. J. Perry,et al.  Structures of herpes simplex virus type 1 genes required for replication of virus DNA , 1988, Journal of virology.

[4]  D. McGeoch,et al.  Identification of herpes simplex virus type 1 genes required for origin-dependent DNA synthesis , 1988, Journal of virology.

[5]  S. Weller,et al.  Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: isolation and characterization of an ICP6 lacZ insertion mutant , 1988, Journal of virology.

[6]  S. Caradonna,et al.  Isolation of a herpes simplex virus cDNA encoding the DNA repair enzyme uracil-DNA glycosylase , 1987, Journal of virology.

[7]  R. Longnecker,et al.  Clustering of genes dispensable for growth in culture in the S component of the HSV-1 genome. , 1987, Science.

[8]  P. C. Weber,et al.  Rapid identification of nonessential genes of herpes simplex virus type 1 by Tn5 mutagenesis. , 1987, Science.

[9]  H. Iba,et al.  Biochemical properties of p60v-src mutants that induce different cell transformation parameters , 1986, Journal of virology.

[10]  H. Ingraham,et al.  DNA fragmentation and cytotoxicity from increased cellular deoxyuridylate. , 1986, Biochemistry.

[11]  V. Preston,et al.  Isolation and characterisation of herpes simplex virus type 1 mutants which fail to induce dUTPase activity. , 1986, Virology.

[12]  B. Weiss,et al.  The repair of uracil-containing DNA. , 1986, Basic life sciences.

[13]  C. Dieckmann,et al.  Assembly of the mitochondrial membrane system. CBP6, a yeast nuclear gene necessary for synthesis of cytochrome b. , 1985, The Journal of biological chemistry.

[14]  E. Wagner Individual HSV Transcripts , 1985 .

[15]  V. Preston,et al.  Identification of the herpes simplex virus type 1 gene encoding the dUTPase. , 1984, Virology.

[16]  M. Williams Deoxyuridine triphosphate nucleotidohydrolase induced by herpes simplex virus type 1. Purification and characterization of induced enzyme. , 1984, The Journal of biological chemistry.

[17]  S. Caradonna,et al.  Purification and properties of the deoxyuridine triphosphate nucleotidohydrolase enzyme derived from HeLa S3 cells. Comparison to a distinct dUTP nucleotidohydrolase induced in herpes simplex virus-infected HeLa S3 cells. , 1984, The Journal of biological chemistry.

[18]  J. Glorioso,et al.  Antigenic variants of herpes simplex virus selected with glycoprotein-specific monoclonal antibodies , 1983, Journal of virology.

[19]  A. Davison,et al.  Thymidine kinase deletion mutants of herpes simplex virus type 1. , 1982, The Journal of general virology.

[20]  B. Weiss,et al.  Specific mutator effects of ung (uracil-DNA glycosylase) mutations in Escherichia coli , 1982, Journal of bacteriology.

[21]  Y. Cheng,et al.  Induction of uracil-DNA glycosylase and dUTP nucleotidohydrolase activity in herpes simplex virus-infected human cells. , 1981, The Journal of biological chemistry.

[22]  Jonathan A. Cooper,et al.  Epidermal growth factor induces rapid tyrosine phosphorylation of proteins in A431 human tumor cells , 1981, Cell.

[23]  J. Glorioso,et al.  Method for induction of mutations in physically defined regions of the herpes simplex virus genome , 1981, Journal of virology.

[24]  Y. Cheng,et al.  The role of deoxyuridine triphosphate nucleotidohydrolase, uracil-DNA glycosylase, and DNA polymerase alpha in the metabolism of FUdR in human tumor cells. , 1980, Molecular pharmacology.

[25]  M. Goulian,et al.  Methotrexate-induced misincorporation of uracil into DNA. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[26]  T. Hunter,et al.  Transforming gene product of Rous sarcoma virus phosphorylates tyrosine , 1980, Proceedings of the National Academy of Sciences.

[27]  D. Vapnek,et al.  Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9 , 1979, Nature.

[28]  H. Towbin,et al.  Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. Kornberg,et al.  Deoxyuridine triphosphatase of Escherichia coli. Purification, properties, and use as a reagent to reduce uracil incorporation into DNA. , 1978, The Journal of biological chemistry.