Reconstructing the full temporal range of archaeological phenomena from sparse data

[1]  D. Roberts,et al.  Statistical inference of earlier origins for the first flaked stone technologies. , 2021, Journal of human evolution.

[2]  D. Roberts,et al.  Modelling the end of the Acheulean at global and continental levels suggests widespread persistence into the Middle Palaeolithic , 2021 .

[3]  A. Bevan,et al.  INFERENCE FROM LARGE SETS OF RADIOCARBON DATES: SOFTWARE AND METHODS , 2020, Radiocarbon.

[4]  Enrico R. Crema,et al.  A multi-proxy inference of Jōmon population dynamics using bayesian phase models, residential data, and summed probability distribution of 14C dates , 2020 .

[5]  D. Roberts,et al.  Inferring the extinction of species known only from a single specimen , 2020, Oryx.

[6]  D. Roberts,et al.  Extinction of one of the world's largest freshwater fishes: Lessons for conserving the endangered Yangtze fauna. , 2019, The Science of the total environment.

[7]  William E. Banks,et al.  An application of hierarchical Bayesian modeling to better constrain the chronologies of Upper Paleolithic archaeological cultures in France between ca. 32,000–21,000 calibrated years before present , 2019, Quaternary Science Reviews.

[8]  B. Brook,et al.  A fast re-sampling method for using reliability ratings of sightings with extinction-date estimators. , 2019, Ecology.

[9]  Melissa G. Torquato,et al.  Bayesian Statistics in Archaeology , 2018, Annual Review of Anthropology.

[10]  Jan Kolář,et al.  Spatio-temporal modelling as a way to reconstruct patterns of past human activities. , 2016, Archaeometry.

[11]  M. Baxter,et al.  Reinventing the wheel? Modelling temporal uncertainty with applications to brooch distributions in Roman Britain , 2016 .

[12]  A. Mesoudi Cultural Evolution: A Review of Theory, Findings and Controversies , 2015, Evolutionary Biology.

[13]  David Taylor,et al.  A revised chronology for the archaeology of the lower Yangtze, China, based on Bayesian statistical modelling , 2015 .

[14]  A. Bayliss Quality in Bayesian chronological models in archaeology , 2015 .

[15]  J. Zilhão,et al.  Problematizing Bayesian approaches to prehistoric chronologies , 2015 .

[16]  C. M. Barton,et al.  Bayesian Estimation Dating of Lithic Surface Collections , 2015 .

[17]  Caitlin E. Buck,et al.  On being a good Bayesian , 2015 .

[18]  Tracy M. Rout,et al.  Inferring species extinction: the use of sighting records , 2015 .

[19]  S. Shennan Demography and Cultural Evolution , 2015 .

[20]  Stephen J. Lycett,et al.  Cultural evolutionary approaches to artifact variation over time and space: basis, progress, and prospects , 2015 .

[21]  N. Bicho,et al.  Bayesian modeling and the chronology of the Portuguese Gravettian , 2015 .

[22]  C. Ramsey Bayesian approaches to the building of archaeological chronologies , 2015 .

[23]  C. Clements,et al.  When Did Carcharocles megalodon Become Extinct? A New Analysis of the Fossil Record , 2014, PloS one.

[24]  D. Roberts,et al.  Accounting for observation reliability when inferring extinction based on sighting records , 2014, Biodiversity and Conservation.

[25]  Peter C. Jordan,et al.  Prehistoric Hunter-Gatherer Innovations , 2014 .

[26]  Mark A. Burgman,et al.  Inferring extinctions from sighting records of variable reliability , 2014 .

[27]  S. Mithen,et al.  Settlement patterns in the late Mesolithic of western Scotland: the implications of Bayesian analysis of radiocarbon dates and inter-site technological comparisons , 2014 .

[28]  Ben Collen,et al.  Experimentally testing the accuracy of an extinction estimator: Solow's optimal linear estimation model. , 2013, The Journal of animal ecology.

[29]  Enrico R. Crema,et al.  Modelling Temporal Uncertainty in Archaeological Analysis , 2012 .

[30]  M. McCarthy,et al.  Optimal Allocation of Conservation Resources to Species That May be Extinct , 2010, Conservation biology : the journal of the Society for Conservation Biology.

[31]  C. Elphick,et al.  Identifying Anomalous Reports of Putatively Extinct Species and Why It Matters , 2010, Conservation biology : the journal of the Society for Conservation Biology.

[32]  L. G.,et al.  Models , methods and techniques for seriation , 2010 .

[33]  Todd A. Surovell,et al.  Correcting temporal frequency distributions for taphonomic bias , 2009 .

[34]  Kaustuv Roy,et al.  The use of sighting records to infer species extinctions: an evaluation of different methods. , 2009, Ecology.

[35]  Alex Mesoudi,et al.  Random copying, frequency-dependent copying and culture change , 2009 .

[36]  Todd A. Surovell,et al.  A note on the use of temporal frequency distributions in studies of prehistoric demography , 2007 .

[37]  D. Roberts,et al.  Significance of Sighting Rate in Inferring Extinction and Threat , 2006, Conservation biology : the journal of the Society for Conservation Biology.

[38]  Andrew R Solow,et al.  Inferring extinction from a sighting record. , 2005, Mathematical biosciences.

[39]  Andrew R. Solow,et al.  Flightless birds: When did the dodo become extinct? , 2003, Nature.

[40]  Andrew R. Solow,et al.  A NONPARAMETRIC TEST FOR EXTINCTION BASED ON A SIGHTING RECORD , 2003 .

[41]  Michael A. McCarthy,et al.  Identifying declining and threatened species with museum data , 1998 .

[42]  Caitlin E. Buck,et al.  THE BAYESIAN APPROACH TO THE INTERPRETATION OF ARCHAEOLOGICAL DATA , 1995 .

[43]  A. Solow Inferring Extinction from Sighting Data , 1993 .

[44]  D. J. Strauss,et al.  Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges , 1989 .

[45]  Douglas S. Robson,et al.  Estimation of a truncation point , 1964 .