8th Conference on Real Numbers and Computers

The lecture is a report on current research activities of the MuPAD group in the area of symbolic and numeric solutions of ODE (ordinary differential equations). Based on a unification of Lie-point-symmetries and Lie-Bäcklund-symmetries the results of classical Lie-symmetry approaches (for example Liouville-Arnold) to ODE are generalized thus opening new avenues for using integrability (around initial values) for wider classes of differential equations. Applications and numerical consequences of these results will be discussed and plans how to extend current solution methods, numerical as well as symbolical, to wider classes of transcendents (i.e. Painlevé transcendents) will be presented. Email address: bf@fuchssteiner.de (Benno Fuchssteiner). Real Numbers and Computers’6, 5 Nov 15-17, 2004, Dagstuhl, Germany Invited Lecture: A survey of Integer Relations algorithms and rational numbers

[1]  Mukarram Ahmad,et al.  Continued fractions , 2019, Quadratic Number Theory.

[2]  Xizhong Zheng,et al.  On the Turing Degrees of Weakly Computable Real Numbers , 2003, J. Log. Comput..

[3]  Milos D. Ercegovac,et al.  Improving Goldschmidt Division, Square Root, and Square Root Reciprocal , 2000, IEEE Trans. Computers.

[4]  Robert I. Soare,et al.  Cohesive sets and recursively enumerable Dedekind cuts , 1969 .

[5]  Arnaud Tisserand,et al.  Towards correctly rounded transcendentals , 1997, Proceedings 13th IEEE Sympsoium on Computer Arithmetic.

[6]  M. Bernhard Introduction to Chaotic Dynamical Systems , 1992 .

[7]  Jean Vignes,et al.  A stochastic arithmetic for reliable scientific computation , 1993 .

[8]  Jerome Toby Coonen Contributions to a proposed standard for binary floating-point arithmetic (computer arithmetic) , 1984 .

[9]  L. Levin,et al.  THE COMPLEXITY OF FINITE OBJECTS AND THE DEVELOPMENT OF THE CONCEPTS OF INFORMATION AND RANDOMNESS BY MEANS OF THE THEORY OF ALGORITHMS , 1970 .

[10]  Kohtaro Tadaki Upper bound by Kolmogorov complexity for the probability in computable POVM measurement , 2002, ArXiv.

[11]  Marian Boykan Pour-El,et al.  The Degree of Unsolvability of a Real Number , 2000, CCA.

[12]  Xizhong Zheng,et al.  On the hierarchy and extension of monotonically computable real numbers , 2003, J. Complex..

[13]  Robert E Goldschmidt,et al.  Applications of division by convergence , 1964 .

[14]  A. Holevo Statistical structure of quantum theory , 2001 .

[15]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[16]  David M. Smith,et al.  Algorithm 693: a FORTRAN package for floating-point multiple-precision arithmetic , 1991, TOMS.

[17]  Hans J. Stetter Polynomials with Coefficients of Limited Accuracy , 1999, CASC.

[18]  Mark Braverman Hyperbolic Julia Sets are Poly-Time Computable , 2005, Electron. Notes Theor. Comput. Sci..

[19]  J. Milnor Dynamics in one complex variable , 2000 .

[20]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[21]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[22]  Peter-Michael Seidel,et al.  A parametric error analysis of Goldschmidt's division algorithm , 2003, Proceedings 2003 16th IEEE Symposium on Computer Arithmetic.

[23]  Dana,et al.  JSL volume 88 issue 4 Cover and Front matter , 1983, The Journal of Symbolic Logic.

[24]  Akio Watanabe,et al.  Architecture and software support in IBM S/390 Parallel Enterprise Servers for IEEE Floating-Point arithmetic , 1999, IBM J. Res. Dev..

[25]  Peter W. Markstein,et al.  IA-64 and elementary functions - speed and precision , 2000 .

[26]  Xizhong Zheng Recursive Approximability of Real Numbers , 2002, Math. Log. Q..

[27]  J. Muller Arithmétique des ordinateurs , 1989 .

[28]  Xizhong Zheng,et al.  Weak computability and representation of reals , 2004, Math. Log. Q..

[29]  Hans J. Stetter,et al.  Numerical polynomial algebra , 2004 .

[30]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[31]  Françoise Gire Two Decidability Problems for Infinite Words , 1986, Inf. Process. Lett..

[32]  Guy L. Steele,et al.  How to print floating-point numbers accurately , 1990, SIGP.

[33]  Ernst Specker,et al.  Nicht konstruktiv beweisbare Sätze der Analysis , 1949, Journal of Symbolic Logic.

[34]  Klaus Weihrauch,et al.  A Finite Hierarchy of the Recursively Enumerable Real Numbers , 1998, MFCS.

[35]  S. F. Anderson,et al.  The IBM system/360 model 91: floating-point execution unit , 1967 .

[36]  Jean-Michel Muller,et al.  Elementary Functions: Algorithms and Implementation , 1997 .

[37]  Olivier Finkel On the Topological Complexity of Infinitary Rational Relations , 2003, RAIRO Theor. Informatics Appl..

[38]  Bakhadyr Khoussainov,et al.  Recursively enumerable reals and Chaitin Ω numbers , 1998 .

[39]  R. Soare Recursive theory and Dedekind cuts , 1969 .

[40]  Alistair H. Lachlan,et al.  Recursive real numbers , 1963, Journal of Symbolic Logic.

[41]  G. Chaitin Incompleteness theorems for random reals , 1987 .

[42]  John Harrison,et al.  Scientific Computing on Itanium-Based Systems , 2002 .

[43]  Guohua Wu,et al.  Degrees of d. c. e. reals , 2004, Math. Log. Q..

[44]  P. Odifreddi Classical recursion theory , 1989 .

[45]  Xiaomei Yang Rounding Errors in Algebraic Processes , 1964, Nature.

[46]  Klaus Weihrauch,et al.  The computational complexity of some julia sets , 2002, STOC '03.

[47]  Robert I. Soare,et al.  Computability and Recursion , 1996, Bulletin of Symbolic Logic.

[48]  Olivier Finkel Undecidability of Topological and Arithmetical Properties of Infinitary Rational Relations , 2003, RAIRO Theor. Informatics Appl..

[49]  Ning Zhong Recursively Enumerable Subsets of Rq in Two Computing Models: Blum-Shub-Smale Machine and Turing Machine , 1998, Theor. Comput. Sci..

[50]  Peter Komerup,et al.  Digit-Set Conversions: Generalizations and Applications , 1995 .

[51]  John R. Myhill,et al.  Criteria of constructibility for real numbers , 1953, Journal of Symbolic Logic.

[52]  Dietmar Saupe,et al.  Efficient computation of Julia sets and their fractal dimension , 1987 .

[53]  Richard Goodman,et al.  Convergence Estimates for the Distribution of Trailing Digits , 1976, JACM.

[54]  Gregory J. Chaitin,et al.  A recent technical report , 1974, SIGA.

[55]  Klaus Weihrauch,et al.  Weakly Computable Real Numbers , 2000, J. Complex..

[56]  Ronald G Mosier Root neighborhoods of a polynomial , 1986 .

[57]  Alexander Raichev,et al.  Relative randomness and real closed fields , 2005, Journal of Symbolic Logic.

[58]  Christophe Prieur How to decide continuity of rational functions on infinite words , 2002, Theor. Comput. Sci..

[59]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[60]  Christian Choffrut,et al.  Decision Issues on Functions Realized by Finite Automata , 1999, J. Autom. Lang. Comb..

[61]  Nicholas Pippenger On-the-Fly Algorithms and Sequential Machines , 2011, IEEE Transactions on Computers.

[62]  Tomás Lang,et al.  On-the-Fly Conversion of Redundant into Conventional Representations , 1987, IEEE Transactions on Computers.

[63]  S. Sieber On a decision method in restricted second-order arithmetic , 1960 .

[64]  George Barmpalias,et al.  H-monotonically Computable Real Numbers , 2005, Math. Log. Q..

[65]  Heinz-Otto Peitgen,et al.  The beauty of fractals - images of complex dynamical systems , 1986 .

[66]  Guohua Wu,et al.  Regular reals , 2005, Math. Log. Q..

[67]  E. T. Goodwin SOLUTION OF EQUATIONS AND SYSTEMS OF EQUATIONS (SECOND EDITION) , 1969 .

[68]  R. O. Gandy,et al.  COMPUTABILITY IN ANALYSIS AND PHYSICS (Perspectives in Mathematical Logic) , 1991 .

[69]  Jean-Michel Muller,et al.  Correctly rounded exponential function in double-precision arithmetic , 2001, SPIE Optics + Photonics.

[70]  Burchard von Braunmühl,et al.  Weakly Computable Real Numbers and Total Computable Real Functions , 2001, COCOON.

[71]  Rodney G. Downey Some Computability-Theoretical Aspects of Reals and Randomness , 2002 .

[72]  Chun-Kuen Ho,et al.  Relatively Recursive Reals and Real Functions , 1994, Theor. Comput. Sci..

[73]  Jean-Eric Pin,et al.  Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.

[74]  Péter Gács,et al.  Quantum algorithmic entropy , 2000, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[75]  Xizhong Zheng,et al.  Divergence bounded computable real numbers , 2006, Theor. Comput. Sci..

[76]  Guido D. Salvucci,et al.  Ieee standard for binary floating-point arithmetic , 1985 .

[77]  David W. Matula The base conversion theorem , 1968 .

[78]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[79]  William D. Clinger How to Read Floating-Point Numbers Accurately , 1990, PLDI.

[80]  Xizhong Zheng,et al.  Closure Properties of Real Number Classes under CBV Functions , 2004, Theory of Computing Systems.

[81]  L. Trefethen,et al.  Pseudozeros of polynomials and pseudospectra of companion matrices , 1994 .