Symbolic-Numeric Integration of the Dynamical Cosserat Equations

We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized alpha-method illustrating the computational efficiency of our approach for problems in structural mechanics.

[1]  O. C. Zienkiewicz,et al.  An alpha modification of Newmark's method , 1980 .

[2]  Albert C. J. Luo,et al.  Nonlinear Deformable-body Dynamics , 2010 .

[3]  M. Rubin Cosserat Theories: Shells, Rods and Points , 2000 .

[4]  A. Hilfinger,et al.  Dynamics of Cilia and Flagella , 2005 .

[5]  Mathieu Desbrun,et al.  A semi-analytical approach to molecular dynamics , 2015, J. Comput. Phys..

[6]  H. Lang,et al.  Multi-body dynamics simulation of geometrically exact Cosserat rods , 2011 .

[7]  Frédéric Boyer,et al.  Geometrically exact Kirchhoff beam theory : application to cable dynamics , 2011 .

[8]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[9]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[10]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[11]  Werner M. Seiler,et al.  Involution - The Formal Theory of Differential Equations and its Applications in Computer Algebra , 2009, Algorithms and computation in mathematics.

[12]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[13]  DOMINIK L. MICHELS,et al.  Exponential integrators for stiff elastodynamic problems , 2014, ACM Trans. Graph..

[14]  R. Tucker,et al.  Nonlinear dynamics of elastic rods using the Cosserat theory: Modelling and simulation , 2008 .

[15]  Andreas Weber,et al.  Stable Integration of the Dynamic Cosserat Equations with Application to Hair Modeling , 2008, J. WSCG.

[16]  Vladimir P. Gerdt,et al.  Lie Symmetry Analysis for Cosserat Rods , 2014, CASC.

[17]  A. Jamiołkowski Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .

[18]  Ingmar H. Riedel-Kruse,et al.  On the General Analytical Solution of the Kinematic Cosserat Equations , 2016, CASC.

[19]  S. Antman Nonlinear problems of elasticity , 1994 .

[20]  Nail H. Ibragimov,et al.  A Practical Course in Differential Equations and Mathematical Modelling: Classical and New Methods. Nonlinear Mathematical Models. Symmetry and Invariance Principles , 2010 .

[21]  Dominik Ludewig Michels,et al.  A physically based approach to the accurate simulation of stiff fibers and stiff fiber meshes , 2015, Comput. Graph..