Has the magnitude of floods across the USA changed with global CO2 levels?

Abstract Statistical relationships between annual floods at 200 long-term (85–127 years of record) streamgauges in the coterminous United States and the global mean carbon dioxide concentration (GMCO2) record are explored. The streamgauge locations are limited to those with little or no regulation or urban development. The coterminous US is divided into four large regions and stationary bootstrapping is used to evaluate if the patterns of these statistical associations are significantly different from what would be expected under the null hypothesis that flood magnitudes are independent of GMCO2. In none of the four regions defined in this study is there strong statistical evidence for flood magnitudes increasing with increasing GMCO2. One region, the southwest, showed a statistically significant negative relationship between GMCO2 and flood magnitudes. The statistical methods applied compensate both for the inter-site correlation of flood magnitudes and the shorter-term (up to a few decades) serial correlation of floods. Citation Hirsch, R.M. and Ryberg, K.R., 2012. Has the magnitude of floods across the USA changed with global CO2 levels? Hydrolological Sciences Journal, 57 (1), 1–9.

[1]  Stefano Schiavon,et al.  Climate Change 2007: The Physical Science Basis. , 2007 .

[2]  Zbigniew W. Kundzewicz,et al.  Change detection in hydrological records—a review of the methodology / Revue méthodologique de la détection de changements dans les chroniques hydrologiques , 2004 .

[3]  J. Knox Sensitivity of modern and Holocene floods to climate change , 2000 .

[4]  R. Stouffer,et al.  Stationarity Is Dead: Whither Water Management? , 2008, Science.

[5]  M. Dettinger,et al.  Large-Scale Atmospheric Forcing of Recent Trends toward Early Snowmelt Runoff in California , 1995 .

[6]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[7]  G. Hodgkins,et al.  Changes in the timing of winter–spring streamflows in eastern North America, 1913–2002 , 2006 .

[8]  J. Durbin,et al.  Testing for serial correlation in least squares regression. II. , 1950, Biometrika.

[9]  O. Edenhofer,et al.  Mitigation from a cross-sectoral perspective , 2007 .

[10]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[11]  M. Dettinger Climate Change, Atmospheric Rivers, and Floods in California – A Multimodel Analysis of Storm Frequency and Magnitude Changes 1 , 2011 .

[12]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[13]  Harry F. Lins,et al.  Streamflow trends in the United States , 1999 .

[14]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[15]  Willem A. Landman,et al.  Climate change 2007 : the physical science basis, S. Solomon, D. Qin, M. Manning, M. Marquis, K. Averyt, M.M.B. Tignor, H. LeRoy Miller, Jr. and Z. Chen (Eds.) : book review , 2010 .

[16]  F. P. Kapinos,et al.  Hydrologic unit maps , 1987 .

[17]  Z. Kundzewicz,et al.  Searching for change in hydrological data , 2004 .

[18]  M. Mudelsee,et al.  No upward trends in the occurrence of extreme floods in central Europe , 2003, Nature.

[19]  P. Webster,et al.  Causes of Observed Changes in Extreme Projections of Future Changes , 2008 .

[20]  G. Villarini,et al.  On the stationarity of annual flood peaks in the continental United States during the 20th century , 2009 .

[21]  G. Lindström,et al.  Runoff trends in Sweden 1807–2002 / Tendances de l’écoulement en Suède entre 1807 et 2002 , 2004 .

[22]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[23]  D. Moorhead,et al.  Increasing risk of great floods in a changing climate , 2002, Nature.

[24]  Gregory J. McCabe,et al.  A step increase in streamflow in the conterminous United States , 2002 .

[25]  Kevin E. Trenberth,et al.  Conceptual Framework for Changes of Extremes of the Hydrological Cycle with Climate Change , 1999 .

[26]  T. Breurch,et al.  A simple test for heteroscedasticity and random coefficient variation (econometrica vol 47 , 1979 .

[27]  Jamie Hannaford,et al.  High‐flow and flood trends in a network of undisturbed catchments in the UK , 2008 .

[28]  J. Durbin,et al.  Testing for serial correlation in least squares regression. I. , 1950, Biometrika.

[29]  A. V. Vecchia Climate simulation and flood risk analysis for 2008-40 for Devils Lake, North Dakota , 2008 .

[30]  Richard M. Vogel,et al.  Trends in floods and low flows in the United States: impact of spatial correlation , 2000 .

[31]  Demetris Koutsoyiannis,et al.  Climate change, the Hurst phenomenon, and hydrological statistics , 2003 .

[32]  G. Villarini,et al.  Flood peak distributions for the eastern United States , 2009 .

[33]  Maciej Radziejewski,et al.  Trend detection in river flow series: 1. Annual maximum flow / Détection de tendance dans des séries de débit fluvial: 1. Débit maximum annuel , 2005 .

[34]  Timothy A. Cohn,et al.  Nature's style: Naturally trendy , 2005 .

[35]  D. Lawrence,et al.  Has streamflow changed in the Nordic countries? - Recent trends and comparisons to hydrological projections , 2010 .