An operational test for the existence of a consistent increasing quasi-concave value function

Existence of an increasing quasi-concave value function consistent with given preference information is an important issue in various fields including Economics, Multiple Criteria Decision Making, and Applied Mathematics. In this paper, we establish necessary and sufficient conditions for existence of a value function satisfying aforementioned properties. This leads to an operational, tractable and easy to use test for checking the existence of a desirable value function. In addition to developing the existence test, we construct consistent linear and non-linear desirable value functions.

[1]  Jyrki Wallenius,et al.  A Progressive Algorithm for Modeling and Solving Multiple-Criteria Decision Problems , 1986, Oper. Res..

[2]  Pekka Korhonen,et al.  Using convex preference cones in multiple criteria decision making and related fields , 2019, Journal of Business Economics.

[3]  Elena Molho,et al.  The origins of quasi-concavity: a development between mathematics and economics , 2004 .

[4]  S. Zionts,et al.  Solving the Discrete Multiple Criteria Problem using Convex Cones , 1984 .

[5]  Thierry Marchant,et al.  An axiomatic approach to noncompensatory sorting methods in MCDM I: The case of two categories (juin 2005) , 2005 .

[6]  Amir Beck,et al.  Introduction to Nonlinear Optimization - Theory, Algorithms, and Applications with MATLAB , 2014, MOS-SIAM Series on Optimization.

[7]  S. Zionts,et al.  An Interactive Multiple Objective Linear Programming Method for a Class of Underlying Nonlinear Utility Functions , 1983 .

[8]  William M. Goldstein,et al.  Decomposable threshold models , 1991 .

[9]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[10]  Peter C. Fishburn,et al.  Utility theory for decision making , 1970 .

[11]  Thierry Marchant,et al.  An axiomatic approach to noncompensatory sorting methods in MCDM, II: More than two categories , 2007, Eur. J. Oper. Res..

[12]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  Alberto Zaffaroni,et al.  Degrees of Efficiency and Degrees of Minimality , 2003, SIAM J. Control. Optim..

[14]  Ozlem Karsu,et al.  Inequity-averse decisions in operational research , 2014 .

[15]  Majid Soleimani-damaneh,et al.  Characterization of nonsmooth quasiconvex and pseudoconvex functions , 2007 .

[16]  Mara Madaleno,et al.  The economic and environmental efficiency assessment in EU cross-country: Evidence from DEA and quantile regression approach , 2017 .

[17]  Mathematical Programming over Cones , 1973 .

[18]  Wing Suen,et al.  The Structure of Economics: A Mathematical Analysis , 1978 .

[19]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[20]  Jyrki Wallenius,et al.  Dual cone approach to convex-cone dominance in multiple criteria decision making , 2016, Eur. J. Oper. Res..

[21]  G. Debreu Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .

[22]  Jyrki Wallenius,et al.  The use of quasi-concave value functions in MCDM: some theoretical results , 2017, Math. Methods Oper. Res..

[23]  Thierry Marchant,et al.  Ordered categories and additive conjoint measurement on connected sets , 2009 .

[24]  Murat Köksalan,et al.  Interactive Approaches for Discrete Alternative Multiple Criteria Decision Making with Monotone Utility Functions , 1995 .

[25]  S. Zionts,et al.  An Interactive Programming Method for Solving the Multiple Criteria Problem , 1976 .