Growth Envelopes of Some Variable and Mixed Function Spaces

We study unboundedness properties of functions belonging to Lebesgue and Lorentz spaces with variable and mixed norms using growth envelopes. Our results extend the ones for the corresponding classical spaces in a natural way. In the case of spaces with mixed norms, it turns out that the unboundedness in the worst direction, i.e., in the direction where $$p_{i}$$ p i is the smallest, is crucial. More precisely, the growth envelope is given by $${\mathfrak {E}}_{{\mathsf {G}}}(L_{\overrightarrow{p}}(\varOmega )) = (t^{-1/\min \{p_{1}, \ldots , p_{d} \}},\min \{p_{1}, \ldots , p_{d} \})$$ E G ( L p → ( Ω ) ) = ( t - 1 / min { p 1 , … , p d } , min { p 1 , … , p d } ) for mixed Lebesgue and $${\mathfrak {E}}_{{\mathsf {G}}}(L_{\overrightarrow{p},q}(\varOmega )) = (t^{-1/\min \{p_{1}, \ldots , p_{d} \}},q)$$ E G ( L p → , q ( Ω ) ) = ( t - 1 / min { p 1 , … , p d } , q ) for mixed Lorentz spaces, respectively. For the variable Lebesgue spaces, we obtain $${\mathfrak {E}}_{{\mathsf {G}}}(L_{p(\cdot )}(\varOmega )) = (t^{-1/p_{-}},p_{-})$$ E G ( L p ( · ) ( Ω ) ) = ( t - 1 / p - , p - ) , where $$p_{-}$$ p - is the essential infimum of $$p(\cdot )$$ p ( · ) , subject to some further assumptions. Similarly, for the variable Lorentz space, it holds $${\mathfrak {E}}_{{\mathsf {G}}}(L_{p(\cdot ),q}(\varOmega )) = (t^{-1/p_{-}},q)$$ E G ( L p ( · ) , q ( Ω ) ) = ( t - 1 / p - , q ) . The growth envelope is used for Hardy-type inequalities and limiting embeddings. In particular, as a by-product, we determine the smallest classical Lebesgue (Lorentz) space which contains a fixed mixed or variable Lebesgue (Lorentz) space, respectively.

[1]  D. Cruz-Uribe,et al.  Variable Hardy Spaces , 2012, 1211.6505.

[2]  Giuseppe Mingione,et al.  Regularity results for electrorheological fluids: the stationary case , 2002 .

[3]  Giuseppe Mingione,et al.  Regularity Results for Stationary Electro-Rheological Fluids , 2002 .

[4]  D. Cruz-Uribe,et al.  THE BOUNDEDNESS OF CLASSICAL OPERATORS ON VARIABLE L p SPACES , 2006 .

[5]  rer. nat. habil. Haroske,et al.  Limiting embeddings, entropy numbers and envelopes in function spaces , 2002 .

[6]  P. Hästö,et al.  MAXIMAL FUNCTIONS IN VARIABLE EXPONENT SPACES: LIMITING CASES OF THE EXPONENT , 2009 .

[7]  Alberto Fiorenza,et al.  Variable Lebesgue Spaces: Foundations and Harmonic Analysis , 2013 .

[8]  M. Ružička,et al.  Mathematical modeling of electrorheological materials , 2001 .

[9]  Jaak Peetre Espaces d'interpolation et théorème de Soboleff , 1966 .

[10]  L. Grafakos Classical Fourier Analysis , 2010 .

[11]  V. Zhikov,et al.  AVERAGING OF FUNCTIONALS OF THE CALCULUS OF VARIATIONS AND ELASTICITY THEORY , 1987 .

[12]  Dorothee D. Haroske,et al.  Envelopes and Sharp Embeddings of Function Spaces , 2006 .

[13]  A. T. Doyle,et al.  Structure Functions , 1998 .

[14]  H. Triebel Sharp Sobolev Embeddings and Related Hardy Inequalities: The Sub ‐‐ Critical Case , 2010 .

[15]  C. Bennett,et al.  Interpolation of operators , 1987 .

[16]  Zhikov On Lavrentiev's Phenomenon. , 1995 .

[17]  Cornelia Schneider,et al.  Besov spaces with positive smoothness on Rn, embeddings and growth envelopes , 2009, J. Approx. Theory.

[18]  Dun Zhao,et al.  On the Spaces L and W , 2001 .

[19]  Kurt Hansson Imbedding theorems of Sobolev type in potential theory. , 1979 .

[20]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .

[21]  Alberto Fiorenza,et al.  Variable Lebesgue Spaces , 2013 .

[22]  H. Triebel,et al.  Sharp sobolev embeddings and related hardy inequalities: The critical case , 1999 .

[23]  D. Haroske,et al.  ENTROPY AND APPROXIMATION NUMBERS OF EMBEDDINGS OF FUNCTION SPACES WITH MUCKENHOUPT WEIGHTS, II. GENERAL WEIGHTS , 2011 .

[24]  M. Ruzicka,et al.  Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .

[25]  D. Haroske,et al.  Entropy numbers of embeddings of function spaces with Muckenhoupt weights, III. Some limiting cases , 2011 .

[26]  Xianling Fan,et al.  Global C1,α regularity for variable exponent elliptic equations in divergence form , 2007 .

[27]  Neil S. Trudinger,et al.  On Imbeddings into Orlicz Spaces and Some Applications , 1967 .

[28]  Giuseppe Mingione,et al.  Regularity Results for a Class of Functionals with Non-Standard Growth , 2001 .

[29]  Y. Jiao,et al.  Martingale Hardy spaces with variable exponents , 2014, 1404.2395.

[30]  Kumbakonam R. Rajagopal,et al.  On the modeling of electrorheological materials , 1996 .

[31]  Jan Vyb'iral,et al.  Lorentz spaces with variable exponents , 2012, 1210.1738.

[32]  D. Haroske,et al.  On Sobolev and Franke–Jawerth embeddings of smoothness Morrey spaces , 2014 .

[33]  D. Haroske,et al.  Entropy and Approximation Numbers of Embeddings of Function Spaces with Muckenhoupt Weights, I , 2008 .

[34]  M. Růžička Modeling, Mathematical and Numerical Analysis of Electrorheological Fluids , 2004 .

[35]  L. Diening Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$ , 2004 .

[36]  D. Cruz-Uribe,et al.  The maximal operator on weighted variable Lebesgue spaces , 2011 .

[37]  Haim Brezis,et al.  A note on limiting cases of sobolev embeddings and convolution inequalities , 1980 .

[38]  D. Haroske,et al.  Some specific unboundedness property in smoothness Morrey spaces. The non-existence of growth envelopes in the subcritical case , 2016 .

[39]  S. Sobolev On a theorem in functional analysis , 1938 .