A subsystems-based approach to the identification of drug targets in bacterial pathogens.

This chapter describes a three-stage approach to target identification based upon subsystem analysis. Subsystems analysis focuses on related metabolic pathways as a unit and is a biochemically-informed approach to target selection. The process involves three stages of analysis; the first stage, selection of the target subsystem, is guided by information about its essentiality and on the predicted vulnerability of the targeted pathway or enzyme to inhibition. The second stage involves analysis of the target subsystem by means of comparative genomics, including genome context analysis and metabolic reconstruction. The third stage evaluates the selection of the specific target genes within the subsystem by target prioritization and validation. The whole process allows for a careful consideration of spectrum, drugability, biological rationale and the metabolic role of the specific target within the context of an integrated circuit within a specific metabolic pathway.

[1]  P. Bork,et al.  Genome evolution reveals biochemical networks and functional modules , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Mark D'Souza,et al.  From Genetic Footprinting to Antimicrobial Drug Targets: Examples in Cofactor Biosynthetic Pathways , 2002, Journal of bacteriology.

[3]  M. Etherton,et al.  Identification of antimicrobial targets using a comprehensive genomic approach. , 2004, Pharmacogenomics.

[4]  C. Brenner,et al.  The Reported Human NADsyn2 Is Ammonia-dependent NAD Synthetase from a Pseudomonad* , 2003, Journal of Biological Chemistry.

[5]  I. Kukavica-Ibrulj,et al.  In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. , 2003, Environmental microbiology.

[6]  I. D'Angelo,et al.  Structure of Human NMN Adenylyltransferase , 2002, The Journal of Biological Chemistry.

[7]  M. Ziegler,et al.  Subcellular Compartmentation and Differential Catalytic Properties of the Three Human Nicotinamide Mononucleotide Adenylyltransferase Isoforms* , 2005, Journal of Biological Chemistry.

[8]  P. Bork,et al.  Non-orthologous gene displacement. , 1996, Trends in genetics : TIG.

[9]  B. Palsson,et al.  Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation , 2005, BMC Microbiology.

[10]  W. Somers,et al.  Identification, Characterization, and Crystal Structure ofBacillus subtilis Nicotinic Acid Mononucleotide Adenylyltransferase* , 2002, The Journal of Biological Chemistry.

[11]  F. Neidhart Escherichia coli and Salmonella. , 1996 .

[12]  G. Magni,et al.  Structure and function of nicotinamide mononucleotide adenylyltransferase. , 2004, Current medicinal chemistry.

[13]  Christopher M. Sassetti,et al.  Genetic requirements for mycobacterial survival during infection , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Eugene V. Koonin,et al.  Comparative genomics, minimal gene-sets and the last universal common ancestor , 2003, Nature Reviews Microbiology.

[15]  B. Palsson,et al.  Expanded Metabolic Reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an In Silico Genome-Scale Characterization of Single- and Double-Deletion Mutants , 2005, Journal of bacteriology.

[16]  N. Grishin,et al.  Crystal Structure of Haemophilus influenzae NadR Protein , 2002, The Journal of Biological Chemistry.

[17]  Hong-Yu Ou,et al.  EG: a database of essential genes , 2004, Nucleic Acids Res..

[18]  M. Schmid,et al.  Genetic analysis of temperature-sensitive lethal mutants of Salmonella typhimurium. , 1989, Genetics.

[19]  E. Koonin,et al.  A minimal gene set for cellular life derived by comparison of complete bacterial genomes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  C. G. Skinner,et al.  N'-(substituted) pantothenamides, antimetabolites of pantothenic acid. , 1970, Archives of biochemistry and biophysics.

[21]  Gurdyal S Besra,et al.  Current status and future development of antitubercular chemotherapy , 2002, Expert opinion on investigational drugs.

[22]  Martin Rosenberg,et al.  Identification of Critical Staphylococcal Genes Using Conditional Phenotypes Generated by Antisense RNA , 2001, Science.

[23]  Tadhg P Begley,et al.  NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria. , 2003, Chemistry & biology.

[24]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[25]  J. Mekalanos,et al.  A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Bernhard O Palsson,et al.  Development of network-based pathway definitions: the need to analyze real metabolic networks. , 2003, Trends in biotechnology.

[27]  Owen White,et al.  Genome Properties: a system for the investigation of prokaryotic genetic content for microbiology, genome annotation and comparative genomics , 2005, Bioinform..

[28]  Michael Y. Galperin,et al.  Searching for drug targets in microbial genomes. , 1999, Current opinion in biotechnology.

[29]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[30]  Charles O. Rock,et al.  Microbiology: A triclosan-resistant bacterial enzyme , 2000, Nature.

[31]  O. White,et al.  Global transposon mutagenesis and a minimal Mycoplasma genome. , 1999, Science.

[32]  M. Bolognesi,et al.  Crystal structure of NH3‐dependent NAD+ synthetase from Bacillus subtilis. , 1996, The EMBO journal.

[33]  R. Overbeek,et al.  The use of gene clusters to infer functional coupling. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[35]  Yinduo Ji,et al.  Genomic analysis using conditional phenotypes generated by antisense RNA. , 2002, Current opinion in microbiology.

[36]  Pieter Dorrestein,et al.  Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase. , 2003, FEMS microbiology letters.

[37]  Eric Haugen,et al.  Comprehensive transposon mutant library of Pseudomonas aeruginosa , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  C. Rock,et al.  Acyl Carrier Protein Is a Cellular Target for the Antibacterial Action of the Pantothenamide Class of Pantothenate Antimetabolites* , 2004, Journal of Biological Chemistry.

[39]  B. Dougherty,et al.  Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. , 2002, Nucleic acids research.

[40]  C. Kinsland,et al.  Identification of the Escherichia coliNicotinic Acid Mononucleotide Adenylyltransferase Gene , 2000, Journal of bacteriology.

[41]  S. Eom,et al.  Crystal structure of NH3‐dependent NAD+ synthetase from Helicobacter pylori , 2005, Proteins.

[42]  A. Osterman,et al.  Ribosylnicotinamide Kinase Domain of NadR Protein: Identification and Implications in NAD Biosynthesis , 2002, Journal of bacteriology.

[43]  Michael Y. Galperin,et al.  Sequence — Evolution — Function , 2003, Springer US.

[44]  B. Dougherty,et al.  Finding drug targets in microbial genomes. , 2001, Drug discovery today.

[45]  Bernhard O. Palsson,et al.  Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions , 2000, BMC Bioinformatics.

[46]  F. McLafferty,et al.  The mechanism of inactivation of 3-hydroxyanthranilate-3,4-dioxygenase by 4-chloro-3-hydroxyanthranilate. , 2005, Biochemistry.

[47]  Howard Xu,et al.  A genome‐wide strategy for the identification of essential genes in Staphylococcus aureus , 2002, Molecular microbiology.

[48]  Peter K. Park,et al.  Identification of yacE (coaE) as the Structural Gene for Dephosphocoenzyme A Kinase inEscherichia coli K-12 , 2001, Journal of bacteriology.

[49]  M. Schmid,et al.  Novel approaches to the discovery of antimicrobial agents. , 1998, Current opinion in chemical biology.

[50]  Peter D. Karp,et al.  A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases , 2004, BMC Bioinformatics.

[51]  Mark D'Souza,et al.  Use of contiguity on the chromosome to predict functional coupling , 1998, Silico Biol..

[52]  W. V. Shaw,et al.  Purification and Characterization of Phosphopantetheine Adenylyltransferase from Escherichia coli * , 1999, The Journal of Biological Chemistry.

[53]  C. Schilling,et al.  Flux coupling analysis of genome-scale metabolic network reconstructions. , 2004, Genome research.

[54]  Ross A. Overbeek,et al.  Automatic detection of subsystem/pathway variants in genome analysis , 2005, ISMB.

[55]  D. Eisenberg,et al.  Detecting protein function and protein-protein interactions from genome sequences. , 1999, Science.

[56]  E. Koonin,et al.  Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. , 2002, Genome research.

[57]  Michael Y. Galperin The Molecular Biology Database Collection: 2005 update , 2004, Nucleic Acids Res..

[58]  J. Reidl,et al.  NadN and e (P4) Are Essential for Utilization of NAD and Nicotinamide Mononucleotide but Not Nicotinamide Riboside in Haemophilus influenzae , 2001, Journal of bacteriology.

[59]  Jane Lomax,et al.  Get ready to GO! A biologist's guide to the Gene Ontology , 2005, Briefings Bioinform..

[60]  Naryttza N. Diaz,et al.  The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes , 2005, Nucleic acids research.

[61]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[62]  B. Palsson,et al.  Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. , 2003, Omics : a journal of integrative biology.

[63]  G. Bringmann,et al.  PnuC and the Utilization of the Nicotinamide Riboside Analog 3-Aminopyridine in Haemophilus influenzae , 2004, Antimicrobial Agents and Chemotherapy.

[64]  J. Reidl,et al.  Coupling of NAD+ Biosynthesis and Nicotinamide Ribosyl Transport: Characterization of NadR Ribonucleotide Kinase Mutants of Haemophilus influenzae , 2005, Journal of bacteriology.

[65]  Athanasios Lykidis,et al.  Complete Reconstitution of the Human Coenzyme A Biosynthetic Pathway via Comparative Genomics* , 2002, The Journal of Biological Chemistry.

[66]  R. Overbeek,et al.  A reconstruction of the metabolism of Methanococcus jannaschii from sequence data. , 1997, Gene.

[67]  J. Roth,et al.  The nadI region of Salmonella typhimurium encodes a bifunctional regulatory protein , 1991, Journal of bacteriology.

[68]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  F. McLafferty,et al.  Phosphopantothenoylcysteine Synthetase from Escherichia coli , 2001, The Journal of Biological Chemistry.

[70]  G. Magni,et al.  Identification of a novel human nicotinamide mononucleotide adenylyltransferase. , 2002, Biochemical and biophysical research communications.

[71]  Ronald W. Davis,et al.  Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. , 1999, Science.

[72]  N. Grishin,et al.  Structural Characterization of a Human Cytosolic NMN/NaMN Adenylyltransferase and Implication in Human NAD Biosynthesis* 210 , 2003, The Journal of Biological Chemistry.

[73]  A. von Eckardstein,et al.  Adenovirus-mediated Rescue of Lipoprotein Lipase-deficient Mice , 2001, The Journal of Biological Chemistry.

[74]  C. Tang,et al.  Signature Tagged Mutagenesis of Haemophilus influenzae identifies genes required for in vivo survival. , 2002, Microbial pathogenesis.

[75]  M. Kanehisa,et al.  Reconstruction of amino acid biosynthesis pathways from the complete genome sequence. , 1998, Genome research.

[76]  N. Grishin,et al.  Structure of Human Nicotinamide/Nicotinic Acid Mononucleotide Adenylyltransferase , 2002, The Journal of Biological Chemistry.

[77]  Charles O. Rock,et al.  erratum: A triclosan-resistant bacterial enzyme , 2000, Nature.

[78]  G. Vovis,et al.  Genomics and Antimicrobial Drug Discovery , 1999, Antimicrobial Agents and Chemotherapy.

[79]  B. Snel,et al.  Function prediction and protein networks. , 2003, Current opinion in cell biology.

[80]  R. Overbeek,et al.  Missing genes in metabolic pathways: a comparative genomics approach. , 2003, Current opinion in chemical biology.

[81]  Peter D. Karp,et al.  MetaCyc: a multiorganism database of metabolic pathways and enzymes. , 2004, Nucleic acids research.

[82]  Kei-Hoi Cheung,et al.  Large-scale analysis of the yeast genome by transposon tagging and gene disruption , 1999, Nature.

[83]  Manuel Peitsch,et al.  A genome-based approach for the identification of essential bacterial genes , 1998, Nature Biotechnology.

[84]  Adam Godzik,et al.  Multiple flexible structure alignment using partial order graphs , 2005, Bioinform..

[85]  Michael Y. Galperin,et al.  The COG database: new developments in phylogenetic classification of proteins from complete genomes , 2001, Nucleic Acids Res..

[86]  Yinduo Ji The role of genomics in the discovery of novel targets for antibiotic therapy. , 2002, Pharmacogenomics.

[87]  R. Levesque,et al.  Discovering essential and infection-related genes. , 2001, Current opinion in microbiology.

[88]  A. Moya,et al.  Determination of the Core of a Minimal Bacterial Gene Set , 2004, Microbiology and Molecular Biology Reviews.

[89]  J. W. Campbell,et al.  Experimental Determination and System Level Analysis of Essential Genes in Escherichia coli MG1655 , 2003, Journal of bacteriology.

[90]  M. Grusch,et al.  Consequences of IMP dehydrogenase inhibition, and its relationship to cancer and apoptosis. , 1999, Current medicinal chemistry.

[91]  E. Rubin,et al.  Genes required for mycobacterial growth defined by high density mutagenesis , 2003, Molecular microbiology.

[92]  T. Dandekar,et al.  Comparative genome analysis and pathway reconstruction. , 2002, Pharmacogenomics.

[93]  J. Willison,et al.  The Escherichia coli efg gene and the Rhodobacter capsulatus adgA gene code for NH3-dependent NAD synthetase , 1994, Journal of bacteriology.

[94]  Nadia Raffaelli,et al.  The Escherichia coli NadR Regulator Is Endowed with Nicotinamide Mononucleotide Adenylyltransferase Activity , 1999, Journal of bacteriology.

[95]  C. Brenner,et al.  Eukaryotic NAD+ Synthetase Qns1 Contains an Essential, Obligate Intramolecular Thiol Glutamine Amidotransferase Domain Related to Nitrilase* , 2003, Journal of Biological Chemistry.

[96]  G. Riccardi,et al.  Glutamine amidotransferase activity of NAD+ synthetase from Mycobacterium tuberculosis depends on an amino-terminal nitrilase domain. , 2005, Research in microbiology.

[97]  M. Wagner,et al.  A candidate NAD+ transporter in an intracellular bacterial symbiont related to Chlamydiae , 2004, Nature.